Java多线程之线程池

2017-05-10  本文已影响41人  Showdy

线程池的优势:

Thread pools address two different problems: they usually provide improved performance when executing large numbers of asynchronous tasks,due to reduced per-task invocation overhead,and they provide a means of bounding and managing the resources, including threads, consumed when executing a collection of tasks.

线程池主要解决了两个方面的问题:

线程池的创建:

可以通过ThreadPoolExecutor构造函数来创建一个线程池:


    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler)

创建一个线程池需要输入几个参数:

向线程池提交任务:

线程池的关闭


    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            //将线程池状态设置为SHUTDOWN
            advanceRunState(SHUTDOWN);
            //注意这里是中断所有空闲的线程:runWorker中等待的线程被中断 → 进入processWorkerExit →
            // tryTerminate方法中会保证队列中剩余的任务得到执行。
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }


    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            // STOP状态:不再接受新任务且不再执行队列中的任务。
            advanceRunState(STOP);
            // 中断所有线程
            interruptWorkers();
            // 返回队列中还没有被执行的任务。
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }


    public boolean isShutdown() {
        //说明只要调用了shutdown()或者shutdwonNow()之一,此方法就会返回ture.
        return ! isRunning(ctl.get());
    }
    
     private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }


    public boolean isTerminated() {
        return runStateAtLeast(ctl.get(), TERMINATED);
    }
        
    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

我们可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池,它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。

只要调用了这两个关闭方法的其中一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于我们应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow。

AtomicInteger ctl

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

AtomicInteger保证了对这个变量的操作是原子的,通过巧妙的操作,ThreadPoolExecutor用这一个变量保存了两个内容:

低29位存线程数,高3位存runState,这样runState有5个值:


    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

线程池中各个状态间的转换比较复杂:

围绕ctl变量操作如下:

    
    /*
     * 该方法用于取出runstate的值,因为CAPACTIY值为:00011111111111111111111111111111
     * ~为按位取反操作,则~CAPACITY值为:11100000000000000000000000000000
     * 再同参数做&操作,就将低29位置0了,而高3位还是保持原先的值,也就是runState的值
     * /
    private static int runStateOf(int c) { 
        return c & ~CAPACITY; 
    }
    
    /**
     * 这个方法用于取出workerCount的值
     * 因为CAPACITY值为:00011111111111111111111111111111,所以&操作将参数的高3位置0了
     * 保留参数的低29位,也就是workerCount的值
     * 
     * @param c ctl, 存储runState和workerCount的int值
     * @return workerCount的值
     */
    private static int workerCountOf(int c)  {
         return c & CAPACITY;
     }
    
    /**
     * 将runState和workerCount存到同一个int中
     * “|”运算的意思是,假设rs的值是101000,wc的值是000111,则他们位或运算的值为101111
     * 
     * @param rs runState移位过后的值,负责填充返回值的高3位
     * @param wc workerCount移位过后的值,负责填充返回值的低29位
     * @return 两者或运算过后的值
     */
    private static int ctlOf(int rs, int wc) {
         return rs | wc; 
    }

    // 只有RUNNING状态会小于0
    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

线程池配置策略:

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

  1. 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
  2. 任务的优先级:高,中和低。
  3. 任务的执行时间:长,中和短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,任务积压在线程池里。如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务

上一篇下一篇

猜你喜欢

热点阅读