02时间&空间复杂度计算
2020-04-01 本文已影响0人
小猪也浪漫
时间复杂度计算
1 大O表示法
- 用常数1取代运行时间中所有常数 3->1 O(1)
- 在修改运行次数函数中,只保留最高阶项 n3+2n2+5 -> O(n^3)
- 如果在最高阶存在且不等于1,则去除这个项目相乘的常数 2n^3 -> n^3
2 时间复杂度术语
- 常数阶
- 线性阶
- 平方阶
- 对数阶
- 立方阶
- nlog阶
- 指数阶(不考虑) O(2^n)或者O(n!) 除非是非常小的n,否则会造成噩梦般的时间消耗. 这是一种不切实际的算法时间复杂度. 一般不考虑!
3.1 常数阶时间复杂度 O(1)
//1+1+1 = 3 O(1)
void testSum1(int n){
int sum = 0; //执行1次
sum = (1+n)*n/2; //执行1次
printf("testSum1:%d\n",sum);//执行1次
}
//1+1+1+1+1+1+1 = 7 O(1)
void testSum2(int n){
int sum = 0; //执行1次
sum = (1+n)*n/2; //执行1次
sum = (1+n)*n/2; //执行1次
sum = (1+n)*n/2; //执行1次
sum = (1+n)*n/2; //执行1次
sum = (1+n)*n/2; //执行1次
printf("testSum2:%d\n",sum);//执行1次
}
//x=x+1; 执行1次
void add(int x){
x = x+1;
}
3.2 线性阶时间复杂度 O(n)
//x=x+1; 执行n次 O(n)
void add2(int x,int n){
for (int i = 0; i < n; i++) {
x = x+1;
}
}
//1+(n+1)+n+1 = 3+2n -> O(n)
void testSum3(int n){
int i,sum = 0; //执行1次
for (i = 1; i <= n; i++) { //执行n+1次
sum += i; //执行n次
}
printf("testSum3:%d\n",sum); //执行1次
}
3.3 对数阶时间复杂度 O(logn)
/*2的x次方等于n x = log2n ->O(logn)*/
void testA(int n){
int count = 1; //执行1次
//n = 10
while (count < n) {
count = count * 2;
}
}
3.4 平方阶时间复杂度 O(n^2)
//x=x+1; 执行n*n次 ->O(n^2)
void add3(int x,int n){
for (int i = 0; i< n; i++) {
for (int j = 0; j < n ; j++) {
x=x+1;
}
}
}
//n+(n-1)+(n-2)+...+1 = n(n-1)/2 = n^2/2 + n/2 = O(n^2)
//sn = n(a1+an)/2
void testSum4(int n){
int sum = 0;
for(int i = 0; i < n;i++)
for (int j = i; j < n; j++) {
sum += j;
}
printf("textSum4:%d",sum);
}
//1+(n+1)+n(n+1)+n^2+n^2 = 2+3n^2+2n -> O(n^2)
void testSum5(int n){
int i,j,x=0,sum = 0; //执行1次
for (i = 1; i <= n; i++) { //执行n+1次
for (j = 1; j <= n; j++) { //执行n(n+1)
x++; //执行n*n次
sum = sum + x; //执行n*n次
}
}
printf("testSum5:%d\n",sum);
}
3.5 立方阶时间复杂度 O(n^3)
void testB(int n){
int sum = 1; //执行1次
for (int i = 0; i < n; i++) { //执行n次
for (int j = 0 ; j < n; j++) { //执行n*n次
for (int k = 0; k < n; k++) {//执行n*n*n次
sum = sum * 2; //执行n*n*n次
}
}
}
}
4 思考题
有兴趣的话,评论区留下你的答案, 共同探讨
空间复杂度计算
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式:S(n) = n(f(n))其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数
程序空间计算因素:
- 寄存本身的指令
- 常数
- 变量
- 输入
- 对数据进行操作的辅助空间
- 在考量算法的空间复杂度,主要考虑算法执行时所需要的辅助空间.
空间复杂度计算:
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, World!\n");
int n = 5;
int a[10] = {1,2,3,4,5,6,7,8,9,10};
//算法实现O(1)
int temp;
for(int i = 0; i < n/2 ; i++){
temp = a[I];
a[i] = a[n-i-1];
a[n-i-1] = temp;
}
for(int i = 0;i < 10;i++)
{
printf("%d\n",a[I]);
}
//算法实现O(n)
int b[10] = {0};
for(int i = 0; i < n;i++){
b[i] = a[n-i-1];
}
for(int i = 0; i < n; i++){
a[i] = b[I];
}
for(int i = 0;i < 10;i++)
{
printf("%d\n",a[I]);
}
return 0;
}
科普算法.jpg