数学分析

数学分析理论基础16:求导法则

2019-01-25  本文已影响38人  溺于恐

求导法则

导数的四则运算

定理:若函数u(x),v(x)在点x_0可导,则函数f(x)=u(x)\pm v(x)x_0也可导,且f'(x_0)=u'(x_0)\pm v'(x_0)

证明:

f'(x_0)=\lim\limits_{\Delta x\to 0}{[u(x_0+\Delta x)\pm v(x_0+\Delta x)]-[u(x_0)\pm v(x_0)]\over \Delta x}

=\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)-u(x_0)\over \Delta x}\pm \lim\limits_{\Delta x\to 0}{v(x_0+\Delta x)-v(x_0)\over \Delta x}

=u'(x_0)\pm v'(x_0)\qquad\mathcal{Q.E.D}

定理:若函数u(x),v(x)在点x_0可导,则函数f(x)=u(x)v(x)在点x_0也可导,且f'(x_0)=u'(x_0)v(x_0)+u(x_0)v'(x_0)

证明:

f'(x_0)=\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)v(x_0+\Delta x)-u(x_0)v(x_0)\over \Delta x}

=\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)v(x_0+\Delta x)-u(x_0)v(x_0+\Delta x)+u(x_0)v(x_0+\Delta x)-u(x_0)v(x_0)\over \Delta x}

=\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)-u(x_0)\over \Delta x}v(x_0+\Delta x)+\lim\limits_{\Delta x\to 0}u(x_0){v(x_0+\Delta x)-v(x_0)\over \Delta x}
=u'(x_0)v(x_0)+u(x_0)v'(x_0)\qquad\mathcal{Q.E.D}

注:利用数学归纳法可推广到任意有限个函数乘积

例:(uvw)'=u'vw+uv'w+uvw'

推论:若函数v(x)在点x_0可导,c为常数,则(cv(x))'_{x=x_0}=cv'(x_0)

定理:若函数u(x),v(x)在点x_0可导,且v(x_0)\neq 0,则f(x)={u(x)\over v(x)}在点x_0也可导,且f'(x_0)={u'(x_0)v(x_0)-u(x_0)v'(x_0)\over [v(x_0)]^2}

证明:

设f(x)=u(x)g(x),其中g(x)={1\over v(x)}

下证g(x)在点x_0可导

{g(x_0+\Delta x)-g(x_0)\over \Delta x}={{1\over v(x_0+\Delta x)}-{1\over v(x_0)}\over \Delta x}

=-{v(x_0+\Delta x)-v(x_0)\over \Delta x}\cdot {1\over v(x_0+\Delta x)v(x_0)}

\because v(x)在点x_0可导

\therefore v(x)在点x_0连续

又v(x_0)\neq 0

\therefore ({1\over v(x)})'_{x=x_0}=g'(x_0)

=\lim\limits_{\Delta x\to 0}{g(x_0+\Delta x)-g(x_0)\over \Delta x}=-{v'(x_0)\over [v(x_0)]^2}

\therefore f'(x_0)=({u(x)\over v(x)})'_{x=x_0}

=u'(x_0){1\over v(x_0)}+u(x_0)(-{v'(x_0)\over [v(x_0)]^2})

={u'(x_0)v(x_0)-u(x_0)v'(x_0)\over [v(x_0)]^2}\qquad\mathcal{Q.E.D}

反函数的导数

定理:设y=f(x)x=\varphi(y)的反函数,若\varphi(y)U(y_0)上连续且严格单调,且\varphi(y_0)\neq 0,则f(x)在点x_0(x_0=\varphi(y_0))可导,且f'(x_0)={1\over \varphi'(x_0)}

证明:

设\Delta x=\varphi(y_0+\Delta y)-\varphi(y_0),\Delta y=f(x_0+\Delta x)-f(x_0)

\because \varphi 在U(y_0)内连续且严格单调

\therefore f=\varphi^{-1}在U(x_0)连续且严格单调

\therefore \Delta y=0\Leftrightarrow \Delta x=0

且\Delta y\to 0\Leftrightarrow \Delta x\to 0

由\varphi'(y_0)\neq 0

f'(x_0)=\lim\limits_{\Delta x\to 0}{\Delta y\over \Delta x}=\lim\limits_{\Delta y\to 0}{\Delta y\over \Delta x}

={1\over \lim\limits_{\Delta y\to 0}{\Delta x\over \Delta y}}={1\over \varphi'(y_0)}\qquad\mathcal{Q.E.D}

例:证明(a^x)'=a^xlna(a\gt 0,a\neq 1)

证:

(a^x)'={1\over (log_ay)'}

={y\over log_ae}=a^xlna

例:证明(arcsinx)'={1\over \sqrt{1-x^2}}

证:

由y=arcsinx,x\in(-1,1)是x=siny,y\in (-{\pi\over 2},{\pi\over 2})的反函数

(arcsinx)'={1\over (siny)'}

={1\over cosy}={1\over \sqrt{1-sin^2y}}

={1\over \sqrt{1-x^2}},x\in (-1,1)

例:证明(arctanx)'={1\over 1+x^2}

证:

由y=arctanx,x\in R是x=tany,y\in (-{\pi\over 2},{\pi\over 2})的反函数

(arctanx)'={1\over (tany)'}
={1\over sec^2y}={1\over 1+tan^2y}

={1\over 1+x^2},x\in R

复合函数的导数

引理:f(x)在点x_0可导\LeftrightarrowU(x_0)上存在一个在点x_0连续的函数H(x),使f(x)-f(x_0)=H(x)(x-x_0),f'(x_0)=H(x_0)

证明:

必要性

设f(x)在点x_0可导

令H(x)=\begin{cases}{f(x)-f(x_0)\over x-x_0}\qquad x\in U^\circ (x_0)\\ f'(x_0)\qquad x=x_0\end{cases}

则\lim\limits_{x\to x_0}H(x)=\lim\limits_{x\to x_0}{f(x)-f(x_0)\over x-x_0}=f'(x_0)=H(x_0)

\therefore H(x)在点x_0连续

且f(x)-f(x_0)=H(x)(x-x_0),x\in U(x_0)

充分性

\exists H(x),x\in U(x_0)在点x_0连续

且f(x)-f(x_0)=H(x)(x-x_0),x\in U(x_0)

\because \lim\limits_{x\to x_0}{f(x)-f(x_0)\over x-x_0}=\lim\limits_{x\to x_0}H(x)=H(x_0)

\therefore f(x)在点x_0可导,且f'(x_0)=H(x_0)\qquad\mathcal{Q.E.D}

注:引理说明点x_0是函数g(x)={f(x)-f(x_0)\over x-x_0}可去间断点的充要条件为f(x)在点x_0可导

定理:设u=\varphi(x)在点x_0可导,y=f(u)在点u_0=\varphi(x_0)可导,则复合函数f\circ \varphi在点x_0可导,且(f\circ \varphi)'(x_0)=f'(u_0)\varphi'(x_0)=f'(\varphi(x_0))\varphi'(x_0)

证明:

\because f(u)在u_0可导

\therefore 存在一个在点u_0连续的函数F(u)使得

f'(u_0)=F(u_0)

且f(u)-f(u_0)=F(u)(u-u_0),u\in U(u_0)

又u=\varphi(x)在点x_0可导

\therefore 存在一个在点x_0连续的函数\phi(x)使得

\varphi'(x_0)=\phi(x_0)

且\varphi(x)-\varphi(x_0)=\phi(x)(x-x_0),x\in U(x_0)

\therefore f(\varphi(x))-f(\varphi(x_0))=F(\varphi(x))(\varphi(x)-\varphi(x_0))

=F(\varphi(x))\phi(x)(x-x_0)

\because \varphi,\phi在点x_0连续,F在点u_0=\varphi(x_0)连续

\therefore H(x)=F(\varphi(x))\phi(x)在点x_0连续

\therefore f\circ \varphi在点x_0可导

且(f\circ \varphi)'(x_0)=H(x_0)=F(\varphi(x_0))\phi(x_0)=f'(u_0)\varphi(x_0)\qquad\mathcal{Q.E.D}

注:

1.求导公式称为链式法则

2.区别f'(\varphi(x))=f'(u)|_{u=\varphi(x)}(f(\varphi(x)))'=f'(\varphi(x))\varphi'(x)

例(对数求导法):设y={(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}},求y'

解:

两边取对数可得

lny=ln{(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}}

=2ln(x+5)+{1\over 3}ln(x-4)-5ln(x+2)-{1\over 2}ln(x+4)

两边对x求导可得

{y'\over y}={2\over x+5}+{1\over 3(x-4)}-{5\over x+2}-{1\over 2(x+4)}

\therefore y'={(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}}[{2\over x+5}+{1\over 3(x-4)}-{5\over x+2}-{1\over 2(x+4)}]

基本求导法则与公式

基本求导法则

1.(u\pm v)'=u'\pm v'

2.(uv)'=u'v+uv',(cu)'=cu'(c为常数)

3.({u\over v})'={u'v-uv'\over v^2},({1\over v})'=-{v'\over v^2}

4.反函数导数{dy\over dx}={1\over {dx\over dy}}

5.复合函数导数{dy\over dx}={dy\over du}\cdot {du\over dx}

基本初等函数导数公式

1.(c)'=0(c为常数)

2.(x^\alpha)'=\alpha x^{\alpha-1}(\alpha 为任意实数)

3.(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x

(cotx)'=-csc^2x,(secx)'=secxtanx,(cscx)'=-cscxcotx

4.(arcsinx)'={1\over \sqrt{1-x^2}},(arccosx)'=-{1\over \sqrt{1-x^2}}

(arctanx)'={1\over 1+x^2},(arccotx)'=-{1\over 1+x^2}

5.(a^x)'=a^xlna,(e^x)'=e^x

6.(log_ax)'={1\over xlna},(lnx)'={1\over x}

上一篇 下一篇

猜你喜欢

热点阅读