大数据,机器学习,人工智能hadoop 大数据底层理解

Spark 行动算子源码分析

2022-02-08  本文已影响0人  Tim在路上

Spark 行动算子源码分析

action算子都是直接调用sc.runJob(this, func _), 在调用时将func传给分区执行,并在调用后,在Driver端对数据在执行自定义的函数。

返回RDD中的元素个数。

def count(): Long = sc.runJob(this, Utils.getIteratorSize_).sum

def getIteratorSize(iterator: Iterator[_]): Long = {
    var count = 0L
    while (iterator.hasNext) {
      count += 1L
      iterator.next()
    }
    count
  }

可以从runJob的源码实现可以看出count函数是给每一个分区传入了遍历统计的函数,在执行runJob后,将每一个分区元素个数封装为Array进行返回,最后执行一个sum,统计整个的RDD的元素个数。

def runJob[T, U: ClassTag](
    rdd: RDD[T],
    func: Iterator[T] => U,
    partitions: Seq[Int]): Array[U] = {
  val cleanedFunc = clean(func)
  runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
}

runJob中clean函数的作用就是递归清理外围类中无用域,降低序列化的开销,防止不必要的不可序列化异常。之后我们会详细的介绍clean的函数。

def runJob[T, U: ClassTag](
    rdd: RDD[T],
    func: (TaskContext, Iterator[T]) => U,
    partitions: Seq[Int],
    resultHandler: (Int, U) => Unit): Unit = {
  // 判断用户是否stop
  if (stopped.get()) {
    throw new IllegalStateException("SparkContext has been shutdown")
  }
  val callSite = getCallSite
  val cleanedFunc = clean(func)
  logInfo("Starting job: " + callSite.shortForm)
  if (conf.getBoolean("spark.logLineage", false)) {
    logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
  }
  // 调用dagScheduler的runJob
  dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler,localProperties.get)
  // 标记进度条已完成
  progressBar.foreach(_.finishAll())
  // 调用checkpoint
  rdd.doCheckpoint()
}

通过源码可以发现,action算子会生成一个job, 并将该job提交给dagScheduler进行执行。执行完成后在调用checkpoint(), 它会根据依赖依次执行每一个RDD的checkpoint, 只有定义了checkpointData, 才会真正执行。

def submitJob[T, U](
    rdd: RDD[T],
    func: (TaskContext, Iterator[T]) => U,
    partitions: Seq[Int],
    callSite: CallSite,
    resultHandler: (Int, U) => Unit,
    properties: Properties): JobWaiter[U] = {
  // Check to make sure we are not launching a task on a partition that does not exist.
  val maxPartitions = rdd.partitions.length
  partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
    throw new IllegalArgumentException(
      "Attempting to access a non-existent partition: " + p + ". " +
        "Total number of partitions: " + maxPartitions)
  }
  // 自增形式获取job id
  val jobId =nextJobId.getAndIncrement()
  if (partitions.size == 0) {
    // Return immediately if the job is running 0 tasks
    return new JobWaiter[U](this, jobId, 0, resultHandler)
  }

assert(partitions.size > 0)
  // 函数转换为Task 迭代器类型
  val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
  val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
// 将任务异步执行,提交到阻塞队列待线程调用提交任务
eventProcessLoop.post(JobSubmitted(
    jobId, rdd, func2, partitions.toArray, callSite, waiter,
    SerializationUtils.clone(properties)))
  waiter
}
override def run(): Unit = {
  try {
    while (!stopped.get) {
      val event =eventQueue.take()
      try {
        // 从阻塞队列中取出JobSubmitted实际
        onReceive(event)
      } catch {
        caseNonFatal(e) =>
          try {
            onError(e)
          } catch {
            caseNonFatal(e) => logError("Unexpected error in " + name, e)
          }
      }
    }
  }
...
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
      // 调用handleJobSubmitted方法
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
...
private[scheduler] def handleJobSubmitted(jobId: Int,
    finalRDD: RDD[_],
    func: (TaskContext, Iterator[_]) => _,
    partitions: Array[Int],
    callSite: CallSite,
    listener: JobListener,
    properties: Properties) {
  var finalStage: ResultStage = null
  try {
    // New stage creation may throw an exception if, for example, jobs are run on a
    // HadoopRDD whose underlying HDFS files have been deleted.
    // 逆序按照shuffle进行切分stage, 返回最后一个stage
    finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
  } catch {
      ...
  }
  // Job submitted, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
  // 封装activeJob
  val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
  clearCacheLocs()
  logInfo("Got job %s (%s) with %d output partitions".format(
    job.jobId, callSite.shortForm, partitions.length))
  logInfo("Final stage: " + finalStage + " (" + finalStage.name+ ")")
  logInfo("Parents of final stage: " + finalStage.parents)
  logInfo("Missing parents: " + getMissingParentStages(finalStage))

  val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs+= job
  finalStage.setActiveJob(job)
  // 绑定job和stage
  val stageIds =jobIdToStageIds(jobId).toArray
  val stageInfos = stageIds.flatMap(id =>stageIdToStage.get(id).map(_.latestInfo))
 // 监听job
  listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
 // 提交stage
  submitStage(finalStage)
}

总的来说,spark任务在action算子时,会提交一个job, 并将job提交给dagScheduler, dagScheduler 将其封装为JobSubmitted对象,以异步的形式提交,线程拿到JobSubmitted获得其finalStage并判断其为resultStage或ShuffleMapStage, (前者有返回,后者无返回),再逆序的根据宽窄依赖将其划分为不同的stage, 最后将每一个stage,按照分区拆分为Tasksets, 最终提交给TaskManage,待Executor资源准备好后进行申请Task。

使用关联和合并的方式减少RDD中的元素。

def reduce(f: (T, T) => T): T = withScope {
  val cleanF = sc.clean(f)
  val reducePartition: Iterator[T] => Option[T] = iter => {
    if (iter.hasNext) {
      Some(iter.reduceLeft(cleanF))
    } else {
      None
    }
  }
  var jobResult: Option[T] = None
  val mergeResult = (index: Int, taskResult: Option[T]) => {
    if (taskResult.isDefined) {
      jobResult = jobResult match {
        case Some(value) => Some(f(value, taskResult.get))
        case None => taskResult
      }
    }
  }
  sc.runJob(this, reducePartition, mergeResult)
  // Get the final result out of our Option, or throw an exception if the RDD was empty
  jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}

reduce算子可以看出,其定义了reducePartition在每一个分区执行的,即reduceLeft, 同时定义了一个mergeResult用于回收合并元素。mergeResult函数是作为resultHandler传入的,这不同于将结果回收到driver后再进行处理。

override def taskSucceeded(index: Int, result: Any): Unit = {
  // resultHandler call must be synchronized in case resultHandler itself is not thread safe.
  synchronized {
    resultHandler(index, result.asInstanceOf[T])
  }
  if (finishedTasks.incrementAndGet() == totalTasks) {
jobPromise.success(())
  }
}

resultHandler是在任务成功后以同步的形式进行调用。

返回包含所有元素的数组。

def collect(): Array[T] = withScope {
  val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
  Array.concat(results: _*)
}
def concat[T: ClassTag](xss: Array[T]*): Array[T] = {
  val b =newBuilder[T]
  b.sizeHint(xss.map(_.length).sum)
  for (xs <- xss) b ++= xs
  b.result()
}

从源码可以看出collect是将分区迭代器转换为Array, 返回driver后在将其统一回收到一个数组中。

取RDD中前num个元素,其工作原理为首先扫描一个分区,根据该分区的结果来估计还需要扫描分区的个数。

def take(num: Int): Array[T] = withScope {
  val scaleUpFactor = Math.max(conf.getInt("spark.rdd.limit.scaleUpFactor", 4), 2)
  if (num == 0) {
    new Array[T](0)
  } else {
    val buf = new ArrayBuffer[T]
    val totalParts = this.partitions.length
    var partsScanned = 0
    while (buf.size < num && partsScanned < totalParts) {
      // The number of partitions to try in this iteration. It is ok for this number to be
      // greater than totalParts because we actually cap it at totalParts in runJob.
      var numPartsToTry = 1L
      val left = num - buf.size
      if (partsScanned > 0) {
        // If we didn't find any rows after the previous iteration, quadruple and retry.
        // Otherwise, interpolate the number of partitions we need to try, but overestimate
        // it by 50%. We also cap the estimation in the end.
        if (buf.isEmpty) {
          numPartsToTry = partsScanned * scaleUpFactor
        } else {
          // As left > 0, numPartsToTry is always >= 1
          numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
          numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
        }
      }

      val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
      val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

      res.foreach(buf ++= _.take(num - buf.size))
      partsScanned += p.size
    }

    buf.toArray
  }
}

返回按照指定顺序排序的最小num个元素。

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
  if (num == 0) {
    Array.empty
} else {
    // 在每个分区上创建最小堆,
    val mapRDDs = mapPartitions { items =>
      // Priority keeps the largest elements, so let's reverse the ordering.
      val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
      queue ++= collectionUtils.takeOrdered(items, num)(ord)
Iterator.single(queue)
    }
    if (mapRDDs.partitions.length == 0) {
      Array.empty
} else {
      mapRDDs.reduce { (queue1, queue2) =>
        queue1 ++= queue2
        queue1
      }.toArray.sorted(ord)
    }
  }
}

在每个分区上创建容量为num的最小堆,获取分区上的最小num个元素。然后调用reduce, 将每个分区返回的queue进行合并为num的最小堆。top的实现就是调用了takeOrdered只是排序的顺序相反。

查看传入key对应的value的值,返回是个数组

def lookup(key: K): Seq[V] = self.withScope {
  self.partitioner match {
    case Some(p) =>
      val index = p.getPartition(key)
      val process = (it: Iterator[(K, V)]) => {
        val buf = new ArrayBuffer[V]
        for (pair <- it if pair._1 == key) {
          buf += pair._2
        }
        buf
      } : Seq[V]
      val res = self.context.runJob(self, process,Array(index))
      res(0)
    case None =>
      self.filter(_._1 == key).map(_._2).collect()
  }
}

如果存在分区器,则通过key获取其所在的分区id, 调用runJob获取对应分区并和key相同的元素的value. 否则就通过filter和map,进行collect获取对应的值。

聚合分区内的元素,回收分区聚合结果,并将其应用于合并函数。

def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
  // Clone the zero value since we will also be serializing it as part of tasks
  var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
  val cleanSeqOp = sc.clean(seqOp)
  val cleanCombOp = sc.clean(combOp)
  val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
  val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
  sc.runJob(this, aggregatePartition, mergeResult)
  jobResult
}

aggregate的实现原理和上文基本一样,定义aggregatePartition传送给分区进行分区内的聚合, mergeResult作为resultHandler在分区执行成功后进行同步执行。

上一篇下一篇

猜你喜欢

热点阅读