深度分析Data Structures and Algorithm每天一个知识点

图论算法:深度和广度优先算法

2022-03-12  本文已影响0人  Sun东辉

一个图(graph) G=(V, E)由顶点(vertex) 的集 V 和边(edge) 的集 E 组成。每一条边就是一副点对(v,w),其中 v,\;w\in V。有时也把边称作弧(arc)。如果点对是有序的,那么图就有向(directed)的。有向的图有时也叫做有向图(digraph)。顶点 v 和 w 邻接(adjacent)当且仅当 v,\;w\in E。在一个具有边(v,w)从而具有边(w,v)的无向图中,w 和 v 邻接且 v 也和 w 邻接。有时候边还具有第三种成分,称作权(weight)或值(cost)。

关于图的存储结构,最常用的有两种,分别为:

广度优先算法

广度优先搜索(Breadth-First-Search),我们平常都简称 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。理解起来并不难,所以我画了一张示意图,你可以看下。

广度优先算法示意图

具体的代码实现如下:

public void bfs(int s, int t) {
  if (s == t) return;
  // visited 记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true
  boolean[] visited = new boolean[v];
  visited[s]=true;
  // queue 用来存储已经被访问、但相连的顶点还没有被访问的顶点的队列
  Queue<Integer> queue = new LinkedList<>();
  queue.add(s);
  // prev 用来记录搜索路径
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  while (queue.size() != 0) {
    int w = queue.poll();
   for (int i = 0; i < adj[w].size(); ++i) {
      int q = adj[w].get(i);
      if (!visited[q]) {
        prev[q] = w;
        if (q == t) {
          print(prev, s, t);
          return;
        }
        visited[q] = true;
        queue.add(q);
      }
    }
  }
}

private void print(int[] prev, int s, int t) { // 递归打印s->t的路径
  if (prev[t] != -1 && t != s) {
    print(prev, s, prev[t]);
  }
  System.out.print(t + " ");
}

广度优先搜索的时间、空间复杂度是多少呢?

最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E),其中,V 表示顶点的个数,E 表示边的个数。当然,对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E 肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)。

广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)。

深度优先算法

深度优先搜索(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。

深度优先算法示意图

实际上,深度优先搜索用的是一种比较著名的算法思想,回溯思想。这种思想解决问题的过程,非常适合用递归来实现。具体的实现代码如下:

boolean found = false; // 全局变量或者类成员变量,当我们已经找到终止顶点 t 之后,我们就不再递归地继续查找了

public void dfs(int s, int t) {
  found = false;
  boolean[] visited = new boolean[v];
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  recurDfs(s, t, visited, prev);
  print(prev, s, t);
}

private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
  if (found == true) return;
  visited[w] = true;
  if (w == t) {
    found = true;
    return;
  }
  for (int i = 0; i < adj[w].size(); ++i) {
    int q = adj[w].get(i);
    if (!visited[q]) {
      prev[q] = w;
      recurDfs(q, t, visited, prev);
    }
  }
}

深度优先搜索的时间、空间复杂度是多少呢?

从上图可以看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)。

上一篇下一篇

猜你喜欢

热点阅读