给零基础转行学Python的一些有效率建议!
Python编程语言由于自身具有的“清晰”、“简略”等特点而受到众多使用Python编程语言的IT从业者喜爱。而且,对于初学者来说,比起其他编程语言,Python 更容易上手。加上很多企业都使用Python编程语言,促进了Python程序员的市场需求量增加。
转行零基础学Python编程开发难度大吗?从哪学起?
近期很多小伙伴问我,如果自己转行学习Python,完全0基础能否学会呢?Python的难度到底有多大?
今天,就为大家详细解读一下这个问题。
首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,干同一个活,编写的代码量,差距也很大。
比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。
所以Python是一种相当高级的语言。
我赞成把Python作为入门语言:
1、语法简单明了。第一门语言,其实就是语法+Flow control(控制),而Python的语法简单,代码可读性高,容易入门。
2、Python的哲学是「做一件事情应该只有一种最好的方法」,对于初学者规范自己的学习有很大的帮助,同时也帮助初学者能够读懂其他人的代码。
3、养成良好的习惯。Python对于代码的要求严谨,特别是缩进(Indentation),对于初学者养成良好的代码习惯很有帮助。
4、Python的语法设计非常优秀,思想也比较现代,可以更快的理解现代编程语言的一些思想。
5、Python仍然是传统基于Class的OO,和Java、C#、Ruby一样,比较大众。从Python去学Design Pattern也是比较合适的。
6、Python的内置数据结构清晰好用,优秀的代码很多。
7、Python免费的书很多(英文),可以找到许多资料啃。同时(国外)社区比较集中,有问题可以向高手问。
8、Python在其他领域,比如科学计算等等有广泛的运用,对于学一门语言作为工具来说,Python很合适。
如何学Python?
1、选择好方向
学习Python的目的不是为了解这门语言,而是为了要学会运用这门语言来解决问题。
但Python的应用方向,实在太广了。在Python基础知识学完之后,如果应用方向不同,要学习的东西也会大不同。
我不能说我要做web开发,学完Python基础知识,跑去学numpy、pandas等知识;也不能说我要用Python做数据分析,学完Python基础知识,然后就跑去学django、flask框架。
这个道理,就跟我们想要去泰国旅行,肯定不会买去日本的机票一样,很简单。但是我们不得不承认,还是会有人犯迷糊,上来就开干。
学习Python,是因为在工作中慢慢了解到Python在数据分析方面,基本涵盖了“数据获取→数据处理→数据分析→数据可视化”这个流程中每个环节,是数据分析的利器,话说这风骚的操作,也是没谁了。
2、规划好路径
当我确定好方向后,下一步骤就是顺着这个方向,建立好我自己的学习路径地图。
这个路径是一个系统性的逻辑主线,这个主线会让我知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。然后每学习一个部分,我就能够有一些实际的成果输出,利用成果产出来形成正向刺激,激励后续的学习。
而且,如果我们身在职场,大多时候我们是没有很大块的时间来集中学习的。我们的学习时间被分割在了一些碎片化的时间里。在碎片化的时间里,系统性的学习一门知识,更需要有一个贯穿前后,系统的逻辑主线,来串联所有相关碎片化的时间的学习。
当我确定好学习Python的数据分析知识,就按照数据分析的流程“数据获取→数据处理→数据分析→数据可视化”这个路径,给自己建立了学习地图:
A、Python基础知识
B、爬虫基本知识+sql
C、。。。(按自己需求选择)
3、对基本概念建立认知
Python是我学习的第一门编程语言,我在开始学习Python的时候,是一个连什么是字符串都不知道小白。所以对我来说,最重要的开始是,首先对这一领域的基本概念建立认知!
事实上,对一门领域完全零基础的人,想要开始学习它的话,真正重要的工作是先对这门领域的基本概念建立认知。
比如我在看到教程中有句话是“为变量赋值”,那我至少得知道,什么是变量?赋值是什么意思?
不知道为什么这么重要的一个开始,很多人都不在意,不知道是大家都天赋异禀,觉得不屑于提起这基础的步骤,还是很多人已经忘记了从小白一路走过来的痛苦和挣扎。人是会篡改记忆的,会认为现在拥有的都是轻松获得的,但真实的经历永远都是坎坷曲折的。
所以网上一些教程典型的通病就是,教学者用一个我们不懂的概念去解释另一个我们不懂的概念,然后我们还是不懂。因为教学者提前预设了作为0基础的我们的立场:已经有其他编程语言基础,只是没有接触Python。
但其实,对真正如我一样的0基础的小白来说,大多时候,Python是我们学习的第一门编程语言。所以这个时候,对我们来说,学习Python,不仅是学习这门语言本身,还是在借着这门语言,帮我们建立对编程世界的一些基本概念的认知。
当我入了门之后,就是顺着在第二步建立的学习路径,一路升级打怪,毕竟,我的征途是星辰大海!
4、最后学习中需要注意的问题
⑴一开始绝不陷入底层原理和细枝末节的纠缠
这个坑,是把我坑的最深的坑。
举个例子,我学到函数的时候,我在开始的时候只需要学会怎么定义函数,怎么调用函数这些基础知识,完全不需要一开始就深入到研究函数参数的传递规则,到底是值传递,还是引用传递。
不是说这底层知识不重要,至少在入门的时候,我们不用一上来就深入这个层面。因为知识的学习,是一个线性的,从潜入深的顺序。如果一开始,就眉毛胡子一把抓,不分主次,可能我们很快就会体会到“从入门到放弃”是一种什么样的感觉。
而且我们在后续的学习过程中,其本身就是在“运用中深入理解,在深入理解中优化应用”。相互印证理解,是一种自然而然的深入学习过程。
⑵最好是按照系统性的课程或书本来学习
既然在这个领域是新手,先接受一个已经存在的系统,再在上面修修改改,是最适合的方案。作为新手,根据我的经验,我认为最好的老师,是一套成体系的课程或书本。
网上的文章或帖子,其实非常不适合充当我们系统性的学习一门知识的教材,因为它是非常碎片化的知识,东一榔头西一棒子,不成体系。不要指望自己能把散落的信息整合成系统的,那是高手要做的事情。不过这些东西,可以作为我们对某些细节的查漏补缺的参考。
⑶以能用起来,解决问题为指导原则
在工作中,需要的更多的是一种解决问题的工程性思维,所以很多时候,我们能掉包解决问题,就没必要自己造轮子。
举个例子,boss要去机场,那我只要会开车,驱车把boss送到目的地就行,而不需要我去研究怎么怎么造车轮,怎么造发动机,怎么造电瓶。。。。。。
当然,如果我们学有余力,能深入,肯定是只好不坏。但还是那句话,开始的时候,不眉毛胡子一把抓。
⑷没有什么牛逼的事情是能够速成的,越是底层的、收益周期越长的技能越是这样。
“大道甚夷,而人好径,终为所误”。我们总会在踩了无数的坑后,才恍然大悟:捷径往往是最长的弯路。学习一门领域的知识,对于普通人人在短时间内从0到1入个门,倒是不难,但是从1到10,到100,进阶为高手,没有长时间的投入和刻意练习,无异于痴人说梦。
Python在机器学习领域被广泛运用,现在的研究热点大都用Python实现;其次,自动化测验、运维,关于测验来说,要把握 Script 的特性,会在规划脚本中,有更好的作用。Python 是现在比较流行的 Script。
最重要的是Python能快速开发的特性能够让你敏捷验证你的想法,而不是把时间浪费在程序本身上,并且有丰厚的第三方库的支撑,也能帮你节省时间!
Python就业方向主要有web开发、爬虫、人工智能。Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样,尽管这个英语的要求非常严格!Python的这种伪代码本质是它最大的优点之一。它使你能够专注于解决问题而不是去搞明白语言本身。