Android开发经验谈Android开发Android开发

Day85 搜索二维矩阵 II

2021-04-22  本文已影响0人  Shimmer_

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

示例1:

1, 4, 7, 11, 15
2, 5, 8, 12, 19
3, 6, 9, 16, 22
10, 13, 14, 17, 24
18, 21, 23, 26, 30

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例2:

1,4,7,11,15
2,5,8,12,19
3,6,9,16,22
10,13,14,17,24
18,21,23,26,30

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109

Java解法

思路:

  • 看题目比较简单,因为矩阵左右上下都有序,找出目标值是否存在,很容易想到二分查找定位边界
    • 先通过二分查找找到可能存在的y列(当前列最接近小于target的列)
    • 再在该列找到目标值
      踩坑,Y列有序不是强关联因为矩阵是左顶角到右底角有序增大,可以考虑同时二分查找X,Y当X=Y时是当前xy矩形最大的数,当前x-1,y-1 小于target x,y大于target时,那target必在x,y右、下底边上在用二分查找 对这两边进行查找
  • 又陷入死角了,参考官方解:采用 最简单的方式,对每行每列进行二分查找:比较低效率的写法
package sj.shimmer.algorithm.m4_2021;

/**
 * Created by SJ on 2021/4/22.
 */

class D85 {
    public static void main(String[] args) {
        int[][] matrix = {
                {1, 4, 7, 11, 15},
                {2, 5, 8, 12, 19},
                {3, 6, 9, 16, 22},
                {10, 13, 14, 17, 24},
                {18, 21, 23, 26, 30},
        };

        int[][] matrix2 = {
                {1, 2, 3, 4, 5},
                {6, 7, 8, 9, 10},
                {11, 12, 13, 14, 15},
                {16, 17, 18, 19, 20},
                {21, 22, 23, 24, 25},
        };
        int[][] matrix3 = {
                {1, 4, 7, 11, 15},
                {2, 5, 8, 12, 19},
                {3, 6, 9, 16, 22},
                {10, 13, 14, 17, 24},
                {18, 21, 23, 26, 30},
        };
        int[][] matrix4 = {
                {1, 3, 5},
        };
        int[][] matrix5 = {
                {1, 4},
                {2, 5},
        };
        int[][] matrix6 = {
                {-1, 3},
        };
//        System.out.println(searchMatrix(matrix, 5));
//        System.out.println(searchMatrix(matrix, 20));
//        System.out.println(searchMatrix(matrix, 30));
//        System.out.println(searchMatrix(matrix2, 19));
//        System.out.println(searchMatrix(matrix3, 5));
//        System.out.println(searchMatrix(matrix4, 1));
//        System.out.println(searchMatrix(matrix5, 2));
//        System.out.println(searchMatrix(matrix6, 3));
        System.out.println(searchMatrix(matrix2, 15));
    }

    private static boolean binarySearch(int[][] matrix, int target, int start, boolean vertical) {
        int lo = start;
        int hi = vertical ? matrix[0].length - 1 : matrix.length - 1;

        while (hi >= lo) {
            int mid = (lo + hi) / 2;
            if (vertical) { // searching a column
                if (matrix[start][mid] < target) {
                    lo = mid + 1;
                } else if (matrix[start][mid] > target) {
                    hi = mid - 1;
                } else {
                    return true;
                }
            } else { // searching a row
                if (matrix[mid][start] < target) {
                    lo = mid + 1;
                } else if (matrix[mid][start] > target) {
                    hi = mid - 1;
                } else {
                    return true;
                }
            }
        }

        return false;
    }

    public static boolean searchMatrix(int[][] matrix, int target) {
        // an empty matrix obviously does not contain `target`
        if (matrix == null || matrix.length == 0) {
            return false;
        }

        // iterate over matrix diagonals
        int shorterDim = Math.min(matrix.length, matrix[0].length);
        for (int i = 0; i < shorterDim; i++) {
            boolean verticalFound = binarySearch(matrix, target, i, true);
            boolean horizontalFound = binarySearch(matrix, target, i, false);
            if (verticalFound || horizontalFound) {
                return true;
            }
        }
        return false;
    }
    //忽略了 对位数据无有序关系
    public static boolean searchMatrix2(int[][] matrix, int target) {
        if (matrix == null || matrix.length == 0) {
            return false;
        }
        int yLen = matrix.length - 1;
        int xLen = matrix[0].length - 1;
        //通过二分查找定位可能存在的位置
        int startX = 0;
        int endX = xLen;
        int startY = 0;
        int endY = yLen;
        int x = -1;
        int y = -1;
        while (startX <= endX && startY <= endY) {
            //找到可能存在的Y
            int midX = (startX + endX) / 2;
            int midY = (startY + endY) / 2;
            if (matrix[midY][midX] == target) {
                return true;
            } else if (matrix[midY][midX] < target) {
                if (midX < endX && midY < endY) {
                    //可增大
                    if (matrix[midY + 1][midX + 1] > target) {//找到
                        for (int i = midX; i >= 0; i--) {
                            if (matrix[midY + 1][i] == target) {
                                return true;
                            }
                        }
                        for (int i = midY; i >= 0; i--) {
                            if (matrix[i][midX + 1] == target) {
                                return true;
                            }
                        }
                        return false;
                    } else if (matrix[midY + 1][midX + 1] == target) {
                        return true;
                    } else {
                        //往后找
                        startX = midX + 1;
                        startY = midY + 1;
                    }
                } else if (midX < endX) {
                    if (matrix[midY][midX + 1] > target) {//找到
                        for (int i = midY; i >= 0; i--) {
                            if (matrix[i][midX + 1] == target) {
                                return true;
                            }
                        }
                        return false;
                    } else if (matrix[midY][midX + 1] == target) {
                        return true;
                    } else {
                        //往后找
                        startX = midX + 1;
                    }
                } else if (midY < endY) {
                    //可增大
                    if (matrix[midY + 1][midX] >= target) {//找到
                        for (int i = midX; i > 0; i--) {
                            if (matrix[midY + 1][i] == target) {
                                return true;
                            }
                        }
                        return false;
                    } else if (matrix[midY + 1][midX] == target) {
                        return true;
                    } else {
                        //往后找
                        startY = midY + 1;
                    }
                } else {
                    return false;
                }
            } else {
                if (midX == 0 && midY == 0) {
                    return false;
                }
                endX = midX;
                endY = midY;
            }
        }
        return false;
    }
}
image

官方解

https://leetcode-cn.com/problems/search-a-2d-matrix-ii/solution/sou-suo-er-wei-ju-zhen-ii-by-leetcode-2/

  1. 依次遍历及依次二分遍历

    比较低下的效率

  2. 指针移位

    指针指向左下角元素,根据target的比较进行移动 直到找到或越界

    这是我想达到的效果,但是因为一直考虑到矩阵过大的问题,想通过二分查找提供效率,导致不能完成

上一篇下一篇

猜你喜欢

热点阅读