Android 重学系列 渲染图层-OpenGL es上的封装(
前言
经过上一篇对OpenGL es的环境搭建,了解几个关键的数据结构,本文将会解析软件模拟纹理的绘制流程。
先摆一张,OpenGL es上下文的数据结构:
OpenGL 上下文结构.png
在阅读本文时候,我们需要时刻记住这个图。
如果问题,可以来本文讨论https://www.jianshu.com/p/29ab1b15cd2a
正文
回去看看我之前写的OpenGL 的纹理与索引一文,纹理的核心步骤如下:
- 1.glGenTextures 生成一个纹理句柄
- 2.glBindTexture 绑定纹理句柄
- 3.glTexParameteri 设置纹理参数
- 4.glTexImage2D 输入到像素数据到纹理
- 5.glActiveTexture 激活纹理
- 6.glDrawElements 绘制到屏幕
- 7.eglSwapBuffers 交换缓冲区,显示到屏幕
glGenTextures
文件:/frameworks/native/opengl/libagl/texture.cpp
void glGenTextures(GLsizei n, GLuint *textures)
{
ogles_context_t* c = ogles_context_t::get();
if (n<0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
// generate unique (shared) texture names
c->surfaceManager->getToken(n, textures);
}
先获取当前线程的上下文ogles_context_t。surfaceManager是指EGLSurfaceManager指针。EGLSurfaceManager继承于TokenManager,getToken是属于TokenManager。
TokenManager getToken
文件:/frameworks/native/opengl/libagl/TokenManager.cpp
status_t TokenManager::getToken(GLsizei n, GLuint *tokens)
{
Mutex::Autolock _l(mLock);
for (GLsizei i=0 ; i<n ; i++)
*tokens++ = mTokenizer.acquire();
return NO_ERROR;
}
文件:/frameworks/native/opengl/libagl/Tokenizer.cpp
uint32_t Tokenizer::acquire()
{
if (!mRanges.size() || mRanges[0].first) {
_insertTokenAt(0,0);
return 0;
}
// just extend the first run
const run_t& run = mRanges[0];
uint32_t token = run.first + run.length;
_insertTokenAt(token, 1);
return token;
}
实际上这里的意思就是计算token的数值。这个token其实由mRanges的vector控制。mRanges的元素其实是run_t结构体,而token则是由run_t的first和length组成。
当第一次生成一个句柄时候,会在0位置插入0,length为1,返回0.不是第一次的时候,新的token为第0个的first+length。
glBindTexture
文件:/frameworks/native/opengl/libagl/texture.cpp
void glBindTexture(GLenum target, GLuint texture)
{
ogles_context_t* c = ogles_context_t::get();
...
// Bind or create a texture
sp<EGLTextureObject> tex;
if (texture == 0) {
// 0 is our local texture object
tex = c->textures.defaultTexture;
} else {
tex = c->surfaceManager->texture(texture);
if (ggl_unlikely(tex == 0)) {
tex = c->surfaceManager->createTexture(texture);
if (tex == 0) {
ogles_error(c, GL_OUT_OF_MEMORY);
return;
}
}
}
bindTextureTmu(c, c->textures.active, texture, tex);
}
EGLTextureObject指一个纹理对象。如果glBindTexture为0,则是一个默认纹理对象。因此当我们关闭一个纹理的时候,就要把glBindTexture的句柄设置为0.
否则EGLSurfaceManager调用texture获取该id的EGLTextureObject,如果找不到创建一个createTexture创建一个该id对应的纹理对象。
最后调用bindTextureTmu,把texture_state_t中的active,texture(纹理句柄),找到或者生成新的纹理对象进行处理。
文件:ameworks/native/opengl/libagl/TextureObjectManager.cpp
sp<EGLTextureObject> EGLSurfaceManager::texture(GLuint name)
{
Mutex::Autolock _l(mLock);
const ssize_t index = mTextures.indexOfKey(name);
if (index >= 0)
return mTextures.valueAt(index);
return 0;
}
mTextures是一个KeyedVector。你可以暂时是做一个SparseArray即可。里面保存了当前key对应的EGLTextureObject,找不到返回0.
sp<EGLTextureObject> EGLSurfaceManager::createTexture(GLuint name)
{
sp<EGLTextureObject> result;
Mutex::Autolock _l(mLock);
if (mTextures.indexOfKey(name) >= 0)
return result; // already exists!
result = new EGLTextureObject();
status_t err = mTextures.add(name, result);
if (err < 0)
result.clear();
return result;
}
此时进行了EGLTextureObject初始化并且添加到mTextures。
EGLTextureObject 初始化
class EGLTextureObject : public LightRefBase<EGLTextureObject>
{
public:
EGLTextureObject();
~EGLTextureObject();
status_t setSurface(GGLSurface const* s);
status_t setImage(ANativeWindowBuffer* buffer);
void setImageBits(void* vaddr) { surface.data = (GGLubyte*)vaddr; }
status_t reallocate(GLint level,
int w, int h, int s,
int format, int compressedFormat, int bpr);
inline size_t size() const { return mSize; }
const GGLSurface& mip(int lod) const;
GGLSurface& editMip(int lod);
bool hasMipmaps() const { return mMipmaps!=0; }
bool isComplete() const { return mIsComplete; }
void copyParameters(const sp<EGLTextureObject>& old);
private:
status_t allocateMipmaps();
void freeMipmaps();
void init();
size_t mSize;
GGLSurface *mMipmaps;
int mNumExtraLod;
bool mIsComplete;
public:
GGLSurface surface;
GLenum wraps;
GLenum wrapt;
GLenum min_filter;
GLenum mag_filter;
GLenum internalformat;
GLint crop_rect[4];
GLint generate_mipmap;
GLint direct;
ANativeWindowBuffer* buffer;
};
能看到里面很多熟悉的结构体。GGLSurface;s,t轴等参数。
EGLTextureObject::EGLTextureObject()
: mSize(0)
{
init();
}
void EGLTextureObject::init()
{
memset(&surface, 0, sizeof(surface));
surface.version = sizeof(surface);
mMipmaps = 0;
mNumExtraLod = 0;
mIsComplete = false;
wraps = GL_REPEAT;
wrapt = GL_REPEAT;
min_filter = GL_LINEAR;
mag_filter = GL_LINEAR;
internalformat = 0;
memset(crop_rect, 0, sizeof(crop_rect));
generate_mipmap = GL_FALSE;
direct = GL_FALSE;
buffer = 0;
}
在这里初始化EGLTextureObject中的参数。s和t默认是重复,同时像素是线性过滤器,ANativeWindowBuffer初始化为0.
bindTextureTmu 更新纹理状态机
bindTextureTmu(c, c->textures.active, texture, tex);
void bindTextureTmu(
ogles_context_t* c, int tmu, GLuint texture, const sp<EGLTextureObject>& tex)
{
if (tex.get() == c->textures.tmu[tmu].texture)
return;
// free the reference to the previously bound object
texture_unit_t& u(c->textures.tmu[tmu]);
if (u.texture)
u.texture->decStrong(c);
// bind this texture to the current active texture unit
// and add a reference to this texture object
u.texture = tex.get();
u.texture->incStrong(c);
u.name = texture;
invalidate_texture(c, tmu);
}
tmu就是texture_state_t中active的句柄其实就是texture_state_t 中 tmu数组中的index。如果此时绑定的纹理和当前已经激活的纹理是同一个index,则直接返回。
否则,把EGLTextureObject 添加到active句柄(index)的位置。也就是说texture_unit_t其实对应就是EGLTextureObject。这样ogles_context_t上下文的活跃纹理就是新的纹理对象,其中texture_unit_t的name会记录当前我们设置的句柄值。
设置参数就跳过,我们直接看核心函数glTexImage2D。
glTexImage2D 加载图像数据
一般用法如下:
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,data);
void glTexImage2D(
GLenum target, GLint level, GLint internalformat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *pixels)
{
ogles_context_t* c = ogles_context_t::get();
//target只能是GL_TEXTURE_2D
if (target != GL_TEXTURE_2D) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
...
int32_t size = 0;
GGLSurface* surface = 0;
int error = createTextureSurface(c, &surface, &size,
level, format, type, width, height);
...
if (pixels) {
const int32_t formatIdx = convertGLPixelFormat(format, type);
const GGLFormat& pixelFormat(c->rasterizer.formats[formatIdx]);
const int32_t align = c->textures.unpackAlignment-1;
const int32_t bpr = ((width * pixelFormat.size) + align) & ~align;
const int32_t stride = bpr / pixelFormat.size;
GGLSurface userSurface;
userSurface.version = sizeof(userSurface);
userSurface.width = width;
userSurface.height = height;
userSurface.stride = stride;
userSurface.format = formatIdx;
userSurface.compressedFormat = 0;
userSurface.data = (GLubyte*)pixels;
int err = copyPixels(c, *surface, 0, 0, userSurface, 0, 0, width, height);
if (err) {
ogles_error(c, err);
return;
}
generateMipmap(c, level);
}
}
- 1.target在OpenGL es只支持GL_TEXTURE_2D
- 2.createTextureSurface 创建一个纹理临时图层
- 3.传进来的像素指针数组不为空,调用copyPixels拷贝。
- 4.generateMipmap 处理状态机
createTextureSurface 获取一个纹理临时图层
int createTextureSurface(ogles_context_t* c,
GGLSurface** outSurface, int32_t* outSize, GLint level,
GLenum format, GLenum type, GLsizei width, GLsizei height,
GLenum compressedFormat = 0)
{
// convert the pixelformat to one we can handle
const int32_t formatIdx = convertGLPixelFormat(format, type);
if (formatIdx == 0) { // we don't know what to do with this
return GL_INVALID_OPERATION;
}
// figure out the size we need as well as the stride
const GGLFormat& pixelFormat(c->rasterizer.formats[formatIdx]);
const int32_t align = c->textures.unpackAlignment-1;
const int32_t bpr = ((width * pixelFormat.size) + align) & ~align;
const size_t size = bpr * height;
const int32_t stride = bpr / pixelFormat.size;
if (level > 0) {
const int active = c->textures.active;
EGLTextureObject* tex = c->textures.tmu[active].texture;
status_t err = tex->reallocate(level,
width, height, stride, formatIdx, compressedFormat, bpr);
if (err != NO_ERROR)
return GL_OUT_OF_MEMORY;
GGLSurface& surface = tex->editMip(level);
*outSurface = &surface;
*outSize = size;
return 0;
}
sp<EGLTextureObject> tex = getAndBindActiveTextureObject(c);
status_t err = tex->reallocate(level,
width, height, stride, formatIdx, compressedFormat, bpr);
if (err != NO_ERROR)
return GL_OUT_OF_MEMORY;
tex->internalformat = format;
*outSurface = &tex->surface;
*outSize = size;
return 0;
}
这里面level一般是0.不为0说明指定多级渐远纹理的级别。则从当前正在活跃textures找到EGLTextureObject。这里我们先按照0的情况处理。
level为0则调用getAndBindActiveTextureObject查找EGLTextureObject,接着调用reallocate,重新为EGLTextureObject设置宽高,读取数据数据的步数。最后获取EGLTextureObject中的GGLSurface 。
getAndBindActiveTextureObject
static __attribute__((noinline))
sp<EGLTextureObject> getAndBindActiveTextureObject(ogles_context_t* c)
{
sp<EGLTextureObject> tex;
const int active = c->textures.active;
const GLuint name = c->textures.tmu[active].name;
// free the reference to the previously bound object
texture_unit_t& u(c->textures.tmu[active]);
if (u.texture)
u.texture->decStrong(c);
if (name == 0) {
tex = c->textures.defaultTexture;
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
if (c->textures.tmu[i].texture == tex.get())
invalidate_texture(c, i);
}
} else {
// get a new texture object for that name
tex = c->surfaceManager->replaceTexture(name);
}
u.texture = tex.get();
u.texture->incStrong(c);
u.name = name;
invalidate_texture(c, active);
return tex;
}
在glBindTexture一步中,把活跃纹理已经设置新的纹理对象。这个方法通过active的位置找到tmu中name对象。如果name是0,则说明是默认的纹理对象。否则将会调用EGLSurfaceManager的replaceTexture。
EGLSurfaceManager replaceTexture
sp<EGLTextureObject> EGLSurfaceManager::replaceTexture(GLuint name)
{
sp<EGLTextureObject> tex;
Mutex::Autolock _l(mLock);
const ssize_t index = mTextures.indexOfKey(name);
if (index >= 0) {
const sp<EGLTextureObject>& old = mTextures.valueAt(index);
const uint32_t refs = old->getStrongCount();
if (ggl_likely(refs == 1)) {
// we're the only owner
tex = old;
} else {
// keep the texture's parameters
tex = new EGLTextureObject();
tex->copyParameters(old);
mTextures.removeItemsAt(index);
mTextures.add(name, tex);
}
}
return tex;
}
此时会从name(也就是我们在glBindTexture时候的target)尝试找到之前通过createTexture存在mTextures的纹理对象。
此时会检测一下,纹理对象中强引用计数,如果又有一个引用则不变。如果引用不为1,则会把原来的移除掉重新生成一个新的查到原来的位置。这里面目的只是为了保证引用计数能够正常工作。
所以getAndBindActiveTextureObject其实就会返回之前设置好的active中的新纹理对象EGLTextureObject。
EGLTextureObject reallocate
status_t EGLTextureObject::reallocate(
GLint level, int w, int h, int s,
int format, int compressedFormat, int bpr)
{
const size_t size = h * bpr;
if (level == 0)
{
if (size!=mSize || !surface.data) {
if (mSize && surface.data) {
free(surface.data);
}
surface.data = (GGLubyte*)malloc(size);
if (!surface.data) {
mSize = 0;
mIsComplete = false;
return NO_MEMORY;
}
mSize = size;
}
surface.version = sizeof(GGLSurface);
surface.width = w;
surface.height = h;
surface.stride = s;
surface.format = format;
surface.compressedFormat = compressedFormat;
if (mMipmaps)
freeMipmaps();
mIsComplete = true;
}
else
{
...
}
return NO_ERROR;
}
其实这里面的工作就是释放了GGLSurface中的数据内存,重新申请一套内存,并且设置当前纹理相关的数据进去。而GGLSurface这个结构体也很简单:
typedef struct {
GGLsizei version; // always set to sizeof(GGLSurface)
GGLuint width; // width in pixels
GGLuint height; // height in pixels
GGLint stride; // stride in pixels
GGLubyte* data; // pointer to the bits
GGLubyte format; // pixel format
GGLubyte rfu[3]; // must be zero
// these values are dependent on the used format
union {
GGLint compressedFormat;
GGLint vstride;
};
void* reserved;
} GGLSurface;
至此createTextureSurface就可以通过活跃的纹理,拿到纹理对象中临时的绘制图层。
copyPixels 拷贝像素数据到纹理图层中
const int32_t formatIdx = convertGLPixelFormat(format, type);
const GGLFormat& pixelFormat(c->rasterizer.formats[formatIdx]);
const int32_t align = c->textures.unpackAlignment-1;
const int32_t bpr = ((width * pixelFormat.size) + align) & ~align;
const int32_t stride = bpr / pixelFormat.size;
GGLSurface userSurface;
userSurface.version = sizeof(userSurface);
userSurface.width = width;
userSurface.height = height;
userSurface.stride = stride;
userSurface.format = formatIdx;
userSurface.compressedFormat = 0;
userSurface.data = (GLubyte*)pixels;
int err = copyPixels(c, *surface, 0, 0, userSurface, 0, 0, width, height);
static __attribute__((noinline))
int copyPixels(
ogles_context_t* c,
const GGLSurface& dst,
GLint xoffset, GLint yoffset,
const GGLSurface& src,
GLint x, GLint y, GLsizei w, GLsizei h)
{
if ((dst.format == src.format) &&
(dst.stride == src.stride) &&
(dst.width == src.width) &&
(dst.height == src.height) &&
(dst.stride > 0) &&
((x|y) == 0) &&
((xoffset|yoffset) == 0))
{
// this is a common case...
const GGLFormat& pixelFormat(c->rasterizer.formats[src.format]);
const size_t size = src.height * src.stride * pixelFormat.size;
memcpy(dst.data, src.data, size);
return 0;
}
// use pixel-flinger to handle all the conversions
GGLContext* ggl = getRasterizer(c);
if (!ggl) {
// the only reason this would fail is because we ran out of memory
return GL_OUT_OF_MEMORY;
}
ggl->colorBuffer(ggl, &dst);
ggl->bindTexture(ggl, &src);
ggl->texCoord2i(ggl, x-xoffset, y-yoffset);
ggl->recti(ggl, xoffset, yoffset, xoffset+w, yoffset+h);
return 0;
}
首先看到此时会进行userface临时纹理图层和纹理图层比较规格。如果一致,则获取当前的像素颜色规格,找到更加精确的surface大小,把glTexImage2D中的pixel像素的数据拷贝到纹理的的GGLSurface中。
这是绝大部分情况,也是当前的逻辑。当然遇到两个规格不同的surface需要拷贝数据,则需要把逻辑交给GGLContext处理。这里暂时不考虑。因为userface的规格参数是拷贝纹理的GGLSurface的。
generateMipmap
void generateMipmap(ogles_context_t* c, GLint level)
{
if (level == 0) {
const int active = c->textures.active;
EGLTextureObject* tex = c->textures.tmu[active].texture;
if (tex->generate_mipmap) {
if (buildAPyramid(c, tex) != NO_ERROR) {
ogles_error(c, GL_OUT_OF_MEMORY);
return;
}
}
}
}
generate_mipmap 此时为false,将不会走进buildAPyramid。
glActiveTexture 激活纹理
void glActiveTexture(GLenum texture)
{
ogles_context_t* c = ogles_context_t::get();
if (uint32_t(texture-GL_TEXTURE0) > uint32_t(GGL_TEXTURE_UNIT_COUNT)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->textures.active = texture - GL_TEXTURE0;
c->rasterizer.procs.activeTexture(c, c->textures.active);
}
关键是c->rasterizer.procs.activeTexture。rasterizer是指context_t,而procs则是GGLContext。
GGLContext activeTexture
文件:/system/core/libpixelflinger/pixelflinger.cpp
static void ggl_activeTexture(void* con, GGLuint tmu)
{
GGL_CONTEXT(c, con);
if (tmu >= GGLuint(GGL_TEXTURE_UNIT_COUNT)) {
ggl_error(c, GGL_INVALID_ENUM);
return;
}
c->activeTMUIndex = tmu;
c->activeTMU = &(c->state.texture[tmu]);
}
此时c是context_t,就是很简单的把context_t中activeTMUIndex设置为当前的纹理句柄,通过句柄找到对应的纹理对象,赋值到activeTMU。
这样context _t状态管理器就拿到了活跃的纹理对象。
glDrawElements 绘制到屏幕
文件:/frameworks/native/opengl/libagl/array.cpp
void glDrawElements(
GLenum mode, GLsizei count, GLenum type, const GLvoid *indices)
{
ogles_context_t* c = ogles_context_t::get();
...
switch (mode) {
case GL_POINTS:
case GL_LINE_STRIP:
case GL_LINE_LOOP:
case GL_LINES:
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
case GL_TRIANGLES:
break;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
switch (type) {
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT:
c->arrays.indicesType = type;
break;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
if (count == 0 || !c->arrays.vertex.enable)
return;
if ((c->cull.enable) && (c->cull.cullFace == GL_FRONT_AND_BACK))
return; // all triangles are culled
// clear the vertex-cache
c->vc.clear();
validate_arrays(c, mode);
// if indices are in a buffer object, the pointer is treated as an
// offset in that buffer.
if (c->arrays.element_array_buffer) {
indices = c->arrays.element_array_buffer->data + uintptr_t(indices);
}
const uint32_t enables = c->rasterizer.state.enables;
if (enables & GGL_ENABLE_TMUS)
ogles_lock_textures(c);
drawElementsPrims[mode](c, count, indices);
if (enables & GGL_ENABLE_TMUS)
ogles_unlock_textures(c);
#if VC_CACHE_STATISTICS
c->vc.total = count;
c->vc.dump_stats(mode);
#endif
}
这个方法的核心实际上是检测array_machine_t结构体,绘制顶点,绘制三角形,检查绑定在顶点数组对象的纹理。
校验拷贝olgs_context_t数据到state_t
文件:/frameworks/native/opengl/libagl/texture.cpp
static __attribute__((noinline))
void validate_tmu(ogles_context_t* c, int i)
{
texture_unit_t& u(c->textures.tmu[i]);
if (u.dirty) {
u.dirty = 0;
c->rasterizer.procs.activeTexture(c, i);
c->rasterizer.procs.bindTexture(c, &(u.texture->surface));
c->rasterizer.procs.texGeni(c, GGL_S,
GGL_TEXTURE_GEN_MODE, GGL_AUTOMATIC);
c->rasterizer.procs.texGeni(c, GGL_T,
GGL_TEXTURE_GEN_MODE, GGL_AUTOMATIC);
c->rasterizer.procs.texParameteri(c, GGL_TEXTURE_2D,
GGL_TEXTURE_WRAP_S, u.texture->wraps);
c->rasterizer.procs.texParameteri(c, GGL_TEXTURE_2D,
GGL_TEXTURE_WRAP_T, u.texture->wrapt);
c->rasterizer.procs.texParameteri(c, GGL_TEXTURE_2D,
GGL_TEXTURE_MIN_FILTER, u.texture->min_filter);
c->rasterizer.procs.texParameteri(c, GGL_TEXTURE_2D,
GGL_TEXTURE_MAG_FILTER, u.texture->mag_filter);
// disable this texture unit if it's not complete
if (!u.texture->isComplete()) {
c->rasterizer.procs.disable(c, GGL_TEXTURE_2D);
}
}
}
在这个过程中会获取之前放在ogles_context_t.texture_state中的数据,全部拷贝到state_t.
绘制核心
可以去看看底层核心:
文件:/system/core/libpixelflinger/scanline.cpp
void scanline(context_t* c)
{
const uint32_t enables = c->state.enables;
const int xs = c->iterators.xl;
const int x1 = c->iterators.xr;
int xc = x1 - xs;
const int16_t* covPtr = c->state.buffers.coverage + xs;
// All iterated values are sampled at the pixel center
// reset iterators for that scanline...
GGLcolor r, g, b, a;
iterators_t& ci = c->iterators;
...
// z iterators are 1.31
GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
struct {
GGLfixed s, t;
} tc[GGL_TEXTURE_UNIT_COUNT];
if (enables & GGL_ENABLE_TMUS) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
if (c->state.texture[i].enable) {
texture_iterators_t& ti = c->state.texture[i].iterators;
if (enables & GGL_ENABLE_W) {
tc[i].s = ti.ydsdy;
tc[i].t = ti.ydtdy;
} else {
tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
}
}
}
}
pixel_t fragment;
pixel_t texel;
pixel_t fb;
uint32_t x = xs;
uint32_t y = c->iterators.y;
while (xc--) {
{ // just a scope
// read color (convert to 8 bits by keeping only the integer part)
fragment.s[1] = fragment.s[2] =
fragment.s[3] = fragment.s[0] = 8;
fragment.c[1] = r >> (GGL_COLOR_BITS-8);
fragment.c[2] = g >> (GGL_COLOR_BITS-8);
fragment.c[3] = b >> (GGL_COLOR_BITS-8);
fragment.c[0] = a >> (GGL_COLOR_BITS-8);
// texturing
if (enables & GGL_ENABLE_TMUS) {
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
texture_t& tx = c->state.texture[i];
if (!tx.enable)
continue;
texture_iterators_t& ti = tx.iterators;
int32_t u, v;
// s-coordinate
if (tx.s_coord != GGL_ONE_TO_ONE) {
const int w = tx.surface.width;
u = wrapping(tc[i].s, w, tx.s_wrap);
tc[i].s += ti.dsdx;
} else {
u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
}
// t-coordinate
if (tx.t_coord != GGL_ONE_TO_ONE) {
const int h = tx.surface.height;
v = wrapping(tc[i].t, h, tx.t_wrap);
tc[i].t += ti.dtdx;
} else {
v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
}
// read texture
if (tx.mag_filter == GGL_NEAREST &&
tx.min_filter == GGL_NEAREST)
{
u >>= 16;
v >>= 16;
tx.surface.read(&tx.surface, c, u, v, &texel);
} else {
const int w = tx.surface.width;
const int h = tx.surface.height;
u -= FIXED_HALF;
v -= FIXED_HALF;
int u0 = u >> 16;
int v0 = v >> 16;
int u1 = u0 + 1;
int v1 = v0 + 1;
if (tx.s_wrap == GGL_REPEAT) {
if (u0<0) u0 += w;
if (u1<0) u1 += w;
if (u0>=w) u0 -= w;
if (u1>=w) u1 -= w;
} else {
if (u0<0) u0 = 0;
if (u1<0) u1 = 0;
if (u0>=w) u0 = w-1;
if (u1>=w) u1 = w-1;
}
if (tx.t_wrap == GGL_REPEAT) {
if (v0<0) v0 += h;
if (v1<0) v1 += h;
if (v0>=h) v0 -= h;
if (v1>=h) v1 -= h;
} else {
if (v0<0) v0 = 0;
if (v1<0) v1 = 0;
if (v0>=h) v0 = h-1;
if (v1>=h) v1 = h-1;
}
pixel_t texels[4];
uint32_t mm[4];
tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
u = (u >> 12) & 0xF;
v = (v >> 12) & 0xF;
u += u>>3;
v += v>>3;
mm[0] = (0x10 - u) * (0x10 - v);
mm[1] = (0x10 - u) * v;
mm[2] = u * (0x10 - v);
mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
for (int j=0 ; j<4 ; j++) {
texel.s[j] = texels[0].s[j];
if (!texel.s[j]) continue;
texel.s[j] += 8;
texel.c[j] = texels[0].c[j]*mm[0] +
texels[1].c[j]*mm[1] +
texels[2].c[j]*mm[2] +
texels[3].c[j]*mm[3] ;
}
}
// Texture environnement...
for (int j=0 ; j<4 ; j++) {
uint32_t& Cf = fragment.c[j];
uint32_t& Ct = texel.c[j];
uint8_t& sf = fragment.s[j];
uint8_t& st = texel.s[j];
uint32_t At = texel.c[0];
uint8_t sat = texel.s[0];
switch (tx.env) {
case GGL_REPLACE:
if (st) {
Cf = Ct;
sf = st;
}
break;
case GGL_MODULATE:
if (st) {
uint32_t factor = Ct + (Ct>>(st-1));
Cf = (Cf * factor) >> st;
}
break;
case GGL_DECAL:
if (sat) {
rescale(Cf, sf, Ct, st);
Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
}
break;
case GGL_BLEND:
if (st) {
uint32_t Cc = tx.env_color[i];
if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8;
else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
uint32_t factor = Ct + (Ct>>(st-1));
Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
}
break;
case GGL_ADD:
if (st) {
rescale(Cf, sf, Ct, st);
Cf += Ct;
}
break;
}
}
}
}
// coverage application
if (enables & GGL_ENABLE_AA) {
...
}
// alpha-test 透明测试
if (enables & GGL_ENABLE_ALPHA_TEST) {
...
}
// depth test 深度测试
if (c->state.buffers.depth.format) {
....
}
// 雾化效果
if (enables & GGL_ENABLE_FOG) {
....
}
//混合
if (enables & GGL_ENABLE_BLENDING) {
...
}
// write,调用framebuffer_t的写方法
c->state.buffers.color.write(
&(c->state.buffers.color), c, x, y, &fragment);
}
discard:
// iterate...
x += 1;
if (enables & GGL_ENABLE_SMOOTH) {
r += c->shade.drdx;
g += c->shade.dgdx;
b += c->shade.dbdx;
a += c->shade.dadx;
}
z += c->shade.dzdx;
f += c->shade.dfdx;
}
}
流程如下
- 1.处理纹理
- 2.处理片元覆盖
- 3.透明测试
- 4.深度测试
- 5.雾化效果
- 6.混合纹理
- 6.处理过的像素点将会调用 context_t 中state_t中的framebuffer_t中color中的write方法。这就是上一篇文章聊过的。在OpenGL es makeCurrent时候将会把Surface中存储数据段的地址和framebuffer_t中color的bit字段关联起来。
如果对这些算法感兴趣,可以看看他们对像素的操作。
我们来看看framebuffer_t中的write方法。当通过glDrawArrays的时候,会调用trianglex_validate进行校验,同时赋值函数指针:
static void pick_read_write(surface_t* s)
{
// Choose best reader/writers.
switch (s->format) {
case GGL_PIXEL_FORMAT_RGBA_8888: s->read = readABGR8888; break;
case GGL_PIXEL_FORMAT_RGB_565: s->read = readRGB565; break;
default: s->read = read_pixel; break;
}
s->write = write_pixel;
}
void write_pixel(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, const pixel_t* pixel)
{
int dither = -1;
if (c->state.enables & GGL_ENABLE_DITHER) {
dither = c->ditherMatrix[ (x & GGL_DITHER_MASK) +
((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
}
const GGLFormat* f = &(c->formats[s->format]);
int32_t index = x + (s->stride * y);
uint8_t* const data = s->data + index * f->size;
uint32_t mask = 0;
uint32_t v = 0;
for (int i=0 ; i<4 ; i++) {
const int component_mask = 1 << i;
if (f->components>=GGL_LUMINANCE &&
(i==GGLFormat::GREEN || i==GGLFormat::BLUE)) {
// destinations L formats don't have G or B
continue;
}
const int l = f->c[i].l;
const int h = f->c[i].h;
if (h && (c->state.mask.color & component_mask)) {
mask |= (((1<<(h-l))-1)<<l);
uint32_t u = pixel->c[i];
int32_t pixelSize = pixel->s[i];
if (pixelSize < (h-l)) {
u = expand(u, pixelSize, h-l);
pixelSize = h-l;
}
v = downshift_component(v, u, pixelSize, 0, h, l, 0, 0, dither);
}
}
if ((c->state.mask.color != 0xF) ||
(c->state.enables & GGL_ENABLE_LOGIC_OP)) {
uint32_t d = 0;
switch (f->size) {
case 1: d = *data; break;
case 2: d = *(uint16_t*)data; break;
case 3: d = (data[2]<<16)|(data[1]<<8)|data[0]; break;
case 4: d = GGL_RGBA_TO_HOST(*(uint32_t*)data); break;
}
if (c->state.enables & GGL_ENABLE_LOGIC_OP) {
v = logic_op(c->state.logic_op.opcode, v, d);
v &= mask;
}
v |= (d & ~mask);
}
switch (f->size) {
case 1: *data = v; break;
case 2: *(uint16_t*)data = v; break;
case 3:
data[0] = v;
data[1] = v>>8;
data[2] = v>>16;
break;
case 4: *(uint32_t*)data = GGL_HOST_TO_RGBA(v); break;
}
}
在这个方法里面,如果没办法完全看懂没关系,但是能知道获取了surface_t中的data字段,这个字段刚好和Surface的bit地址绑定起来,此时写进去数据,就是写进Surface的bit字段中。
写进去了,但是怎么显示到屏幕呢?
eglSwapBuffers 交换缓冲区,显示到屏幕
文件:/frameworks/native/opengl/libs/EGL/eglApi.cpp
EGLBoolean eglSwapBuffers(EGLDisplay dpy, EGLSurface surface)
{
return eglSwapBuffersWithDamageKHR(dpy, surface, NULL, 0);
}
EGLBoolean eglSwapBuffersWithDamageKHR(EGLDisplay dpy, EGLSurface draw,
EGLint *rects, EGLint n_rects)
{
ATRACE_CALL();
clearError();
const egl_display_ptr dp = validate_display(dpy);
if (!dp) return EGL_FALSE;
SurfaceRef _s(dp.get(), draw);
...
std::vector<android_native_rect_t> androidRects((size_t)n_rects);
for (int r = 0; r < n_rects; ++r) {
int offset = r * 4;
int x = rects[offset];
int y = rects[offset + 1];
int width = rects[offset + 2];
int height = rects[offset + 3];
android_native_rect_t androidRect;
androidRect.left = x;
androidRect.top = y + height;
androidRect.right = x + width;
androidRect.bottom = y;
androidRects.push_back(androidRect);
}
native_window_set_surface_damage(s->getNativeWindow(), androidRects.data(), androidRects.size());
if (s->cnx->egl.eglSwapBuffersWithDamageKHR) {
return s->cnx->egl.eglSwapBuffersWithDamageKHR(dp->disp.dpy, s->surface,
rects, n_rects);
} else {
return s->cnx->egl.eglSwapBuffers(dp->disp.dpy, s->surface);
}
}
能看到这里面的核心逻辑,首先拿到整个绘制的区域,接着调用native_window_set_surface_damage设置内容,最后根据OpenGL
es是否包含eglSwapBuffersWithDamageKHR方法来决定,如果包含这个优化的方法,就调用Android平台优化过的eglSwapBuffersWithDamageKHR交换缓冲区方法,否则将会调用通用eglSwapBuffers。
OpenGL es eglSwapBuffers
文件:/frameworks/native/opengl/libagl/egl.cpp
EGLBoolean eglSwapBuffers(EGLDisplay dpy, EGLSurface draw)
{
...
egl_surface_t* d = static_cast<egl_surface_t*>(draw);
...
// post the surface
d->swapBuffers();
// if it's bound to a context, update the buffer
if (d->ctx != EGL_NO_CONTEXT) {
d->bindDrawSurface((ogles_context_t*)d->ctx);
// if this surface is also the read surface of the context
// it is bound to, make sure to update the read buffer as well.
// The EGL spec is a little unclear about this.
egl_context_t* c = egl_context_t::context(d->ctx);
if (c->read == draw) {
d->bindReadSurface((ogles_context_t*)d->ctx);
}
}
return EGL_TRUE;
}
核心方法就是调用egl_surface_t的swapBuffers。而egl_surface_t其实就是上一篇文章解析过的egl_window_surface_v2_t对象。下面这个函数就是引出整个图元状态和申请的核心逻辑。
egl_window_surface_v2_t swapBuffers
EGLBoolean egl_window_surface_v2_t::swapBuffers()
{
...
if (previousBuffer) {
previousBuffer->common.decRef(&previousBuffer->common);
previousBuffer = 0;
}
unlock(buffer);
previousBuffer = buffer;
nativeWindow->queueBuffer(nativeWindow, buffer, -1);
buffer = 0;
// dequeue a new buffer
int fenceFd = -1;
if (nativeWindow->dequeueBuffer(nativeWindow, &buffer, &fenceFd) == NO_ERROR) {
sp<Fence> fence(new Fence(fenceFd));
if (fence->wait(Fence::TIMEOUT_NEVER)) {
nativeWindow->cancelBuffer(nativeWindow, buffer, fenceFd);
return setError(EGL_BAD_ALLOC, EGL_FALSE);
}
// reallocate the depth-buffer if needed
if ((width != buffer->width) || (height != buffer->height)) {
// TODO: we probably should reset the swap rect here
// if the window size has changed
width = buffer->width;
height = buffer->height;
if (depth.data) {
free(depth.data);
depth.width = width;
depth.height = height;
depth.stride = buffer->stride;
uint64_t allocSize = static_cast<uint64_t>(depth.stride) *
static_cast<uint64_t>(depth.height) * 2;
if (depth.stride < 0 || depth.height > INT_MAX ||
allocSize > UINT32_MAX) {
setError(EGL_BAD_ALLOC, EGL_FALSE);
return EGL_FALSE;
}
depth.data = (GGLubyte*)malloc(allocSize);
if (depth.data == 0) {
setError(EGL_BAD_ALLOC, EGL_FALSE);
return EGL_FALSE;
}
}
}
// keep a reference on the buffer
buffer->common.incRef(&buffer->common);
// finally pin the buffer down
if (lock(buffer, GRALLOC_USAGE_SW_READ_OFTEN |
GRALLOC_USAGE_SW_WRITE_OFTEN, &bits) != NO_ERROR) {
...
}
} else {
return setError(EGL_BAD_CURRENT_SURFACE, EGL_FALSE);
}
return EGL_TRUE;
}
在这个过程中做了两个十分重要的事情:
- 1.调用了nativeWindow->queueBuffer 把之前通过egl_window_surface_v2_t申请出来的图元进行queue进入相关的参数生成一个个BufferItem插入到缓冲队列中,等待消费
- 2.调用了nativeWindow->dequeueBuffer 把buffer设置进去并且根据图元生产者那边返回来的slotId(也就是从freeSlot和freebuffer中找到的空闲GraphicBuffer对应缓冲队列的index)返回,也会按照需求新生成一个新的GraphicBuffer。
一般来说,都是先调用dequeue生产一个新的GraphicBuffer,之后调用queueBuffer把当前的图元对应的BufferItem放到缓冲队列。那么这里面的意思很简单,就是swapBuffers绘制上一帧数的内容,接着生成新的一帧,继续在OpenGL es中绘制。
这里能第一次看到fence同步栅的存在。其实原因很简单,一般来说CPU不知道GPU什么时候会完成,需要一个同步栅去通过GPU和CPU。
Android平台 OpenGL es的优化
能看到其实在纹理过程中,涉及到了不少临时图层,如果遇到纹理十分大时候,临时图层来来去去的拷贝十分影响速度。因此在Android中使用了直接纹理机制。
其核心的思想是,不需要临时图层,Android系统直接提供ANativeBuffer,你们绘制在上面就好了。
使用方法如下:
//生成一个直接纹理缓冲
EGLImageKHR eglSrcImage = eglCreateImageKHR(eglDisplay,
EGL_NO_CONTEXT,EGL_NATIVE_BUFFER_ANDROID,(EGLClientBuffer)&sSrcBuffer,0);
//生成
glGenTextures(1,&texID);
//绑定
glBindTexture(GL_TEXTURE_2D,texID);
//存储数据
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D,eglSrcImage);
我们需要生成一个EGLImage对象,承载像素数据,记者直接操作EGLImage。其中EGLClientBuffer这个参数就是ANativeWindowBuffer。
eglCreateImageKHR
EGLImageKHR eglCreateImageKHR(EGLDisplay dpy, EGLContext ctx, EGLenum target,
EGLClientBuffer buffer, const EGLint *attrib_list)
{
clearError();
const egl_display_ptr dp = validate_display(dpy);
if (!dp) return EGL_NO_IMAGE_KHR;
ContextRef _c(dp.get(), ctx);
egl_context_t * const c = _c.get();
std::vector<EGLint> strippedAttribList;
for (const EGLint *attr = attrib_list; attr && attr[0] != EGL_NONE; attr += 2) {
if (attr[0] == EGL_GL_COLORSPACE_KHR &&
dp->haveExtension("EGL_EXT_image_gl_colorspace")) {
if (attr[1] != EGL_GL_COLORSPACE_LINEAR_KHR &&
attr[1] != EGL_GL_COLORSPACE_SRGB_KHR) {
continue;
}
}
strippedAttribList.push_back(attr[0]);
strippedAttribList.push_back(attr[1]);
}
strippedAttribList.push_back(EGL_NONE);
EGLImageKHR result = EGL_NO_IMAGE_KHR;
egl_connection_t* const cnx = &gEGLImpl;
if (cnx->dso && cnx->egl.eglCreateImageKHR) {
result = cnx->egl.eglCreateImageKHR(
dp->disp.dpy,
c ? c->context : EGL_NO_CONTEXT,
target, buffer, strippedAttribList.data());
}
return result;
}
核心方法很简单就是获取屏幕中的配置参数,调用了OpenGL es的eglCreateImageKHR。
OpenGL es的eglCreateImageKHR
EGLImageKHR eglCreateImageKHR(EGLDisplay dpy, EGLContext ctx, EGLenum target,
EGLClientBuffer buffer, const EGLint* /*attrib_list*/)
{
if (egl_display_t::is_valid(dpy) == EGL_FALSE) {
return setError(EGL_BAD_DISPLAY, EGL_NO_IMAGE_KHR);
}
if (ctx != EGL_NO_CONTEXT) {
return setError(EGL_BAD_CONTEXT, EGL_NO_IMAGE_KHR);
}
if (target != EGL_NATIVE_BUFFER_ANDROID) {
return setError(EGL_BAD_PARAMETER, EGL_NO_IMAGE_KHR);
}
ANativeWindowBuffer* native_buffer = (ANativeWindowBuffer*)buffer;
if (native_buffer->common.magic != ANDROID_NATIVE_BUFFER_MAGIC)
return setError(EGL_BAD_PARAMETER, EGL_NO_IMAGE_KHR);
if (native_buffer->common.version != sizeof(ANativeWindowBuffer))
return setError(EGL_BAD_PARAMETER, EGL_NO_IMAGE_KHR);
switch (native_buffer->format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGBX_8888:
case HAL_PIXEL_FORMAT_RGB_888:
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_BGRA_8888:
break;
default:
return setError(EGL_BAD_PARAMETER, EGL_NO_IMAGE_KHR);
}
native_buffer->common.incRef(&native_buffer->common);
return (EGLImageKHR)native_buffer;
}
在这里面完全没有做什么工作,就是检测了像素规格,把ANativeWindowBuffer强转为EGLImageKHR返回。
glEGLImageTargetTexture2DOES
void glEGLImageTargetTexture2DOES(GLenum target, GLeglImageOES image)
{
ogles_context_t* c = ogles_context_t::get();
...
ANativeWindowBuffer* native_buffer = (ANativeWindowBuffer*)image;
...
// bind it to the texture unit
sp<EGLTextureObject> tex = getAndBindActiveTextureObject(c);
tex->setImage(native_buffer);
}
能看到此时会拿到当前活跃target对应的EGLTextureObject,并且设置到Image中,其实就是设置到EGLTextureObject中的buffer参数中。
这样就就不会有一次glTextImage2D一样有一个中间图层诞生,这样加速了整个图层计算速度。同时让OpenGL es可以和Skia等其他画笔进行快速协调合作。
总结
先用一张图总结一下:
OpenGL es纹理绘制过程.png
到这里,我就把Android对OpenGL es的纹理开发流程的源码重新梳理了一遍,对整个机制有了更加深刻的理解。
其实第一次接触OpenGL es为什么要先glGen接着glBind生成一个顶点/缓冲/纹理等对象进行操作。内部是怎么一个机制,真的套路都是背的。阅读源码之后,才知道原来是这么简单。
-
每一个glGen其实就是诞生找到一个合适空闲句柄,每一个glBind这个时候才是把句柄和OpenGL es底层的对象真的绑定起来,并且让ogles_context_t持有当前操作对象。这也是为什么我们需要glBind之后才进行操作。而且一般句柄为0在OpenGL es中,在管理数组中要么是默认要么就是无效,所以我们接触绑定可以把句柄设置为0.
-
当我们调用一次glTextImge2D的时候,将数据传到一个临时的图层中进行拷贝持有。因此,我们每一次不需要的时候,记得要glDelete对应的纹理还有其他对象,因为会不少临时变量占用不释放。
-
除了顶点和缓冲之外,如纹理,深度测试,透明测试,雾化,裁剪等需要图层需要图层承载的操作,都会设置到state_t一个象征着当前操作都设置进去的操作的参数。就以纹理绘制为例子,ogles_context_t 的texture的数组保存着EGLTextureObject,在state_t保存着每一个EGLTextureObject对应的参数,当绘制的时候将会
-
所有图层(framebuffer_t)都是在一个state_t一个当前状态结构体控制,context_t则是状态控制器,能够快捷的获得一些需要的参数。
-
如纹理这种特殊一点,需要进行一次激活,让最外层的上下文持有当前的活跃对象。也是因为纹理的特殊性不像顶点和缓冲,有时候不需要绘制。
-
glDrawArrays 和 glDrawElements 才是把统统这些操作绘制到一个临时的图层。
-
eglSwapBuffer 它的作用就是真正把图元绘制到各个平台中。
有了本文的铺垫,引出了GraphicBuffer这个对象,它是怎么诞生的,又是怎么传输的。下一篇文章将会和大家聊聊,GraphicBuffer的生成,以及Android新版本引入的GraphicBuffer的内核控制机制ion.c,来比较比较ashmem之间的区别,看看为什么Android要抛弃它。