Mac下安装Labelme与使用教程
环境:mac OS + anaconda3
1.建议源:
channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: true
2.创建conda环境:
conda create--name=labelme python=3.6
conda activate labelme
3.安装pyqt和labelme
pip install pyqt5
pip install labelme
4.安装pillow
conda install pillow=4.0
5.打开labelme
labelme
2、Labelme的使用
1.新建文件夹

2.文件夹中新建label.txt
插入以下的文本,car为要识别的label
__ignore__
_background_
car

3.在shell中进入 该文件夹,输入该命令启动labelme
labelme images --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}'

4.编辑
打完点后 control + S 保存json文件

5.voc数据集的生成
https://github.com/wkentaro/labelme/blob/master/examples/semantic_segmentation/labelme2voc.py
下载该文件到文件夹下
在shell中输入命令
python labelme2voc.py images target --labels labels.txt
即可!