全网最硬核 JVM TLAB 分析 1. 内存分配思想引入

2021-02-04  本文已影响0人  干货满满张哈希

今天,又是干货满满的一天。这是全网最硬核 JVM 系列的开篇,首先从 TLAB 开始。由于文章很长,每个人阅读习惯不同,所以特此拆成单篇版和多篇版

1. 观前提醒

本期内容比较硬核,非常全面,涉及到了设计思想到实现原理以及源码,并且还给出了相应的日志以及监控方式,如果有不清楚或者有疑问的地方,欢迎留言。

其中涉及到的设计思想主要为个人理解,实现原理以及源码解析也是个人整理,如果有不准确的地方,非常欢迎指正!提前感谢~~

2. 分配内存实现思路

我们经常会 new 一个对象,这个对象是需要占用空间的,第一次 new 一个对象占用的空间如 图00 所示,

`MetaSpace`

我们这里先只关心堆内部的存储,元空间中的存储,我们会在另一个系列详细讨论。堆内部的存储包括对象头,对象体以及内存对齐填充,那么这块空间是如何分配的呢?

首先,对象所需的内存,在对象的类被解析加载进入元空间之后,就可以在分配内存创建前计算出来。假设现在我们自己来设计堆内存分配,一种最简单的实现方式就是线性分配,也被称为撞针分配(bump-the-pointer)。

image

每次需要分配内存时,先计算出需要的内存大小,然后 CAS 更新图01 中所示的内存分配指针,标记分配的内存。但是内存一般不是这么整齐的,可能有些内存在分配有些内存就被释放回收了。所以一般不会只靠撞针分配。一种思路是在撞针分配的基础上,加上一个 FreeList。

image

简单的实现是将释放的对象内存加入 FreeList,下次分配对象的时候,优先从 FreeList 中寻找合适的内存大小进行分配,之后再在主内存中撞针分配。

这样虽然一定程度上解决了问题,但是目前大多数应用是多线程的,所以内存分配是多线程的,都从主内存中分配,CAS 更新重试过于频繁导致效率低下。目前的应用,一般根据不同业务区分了不同的线程池,在这种情况下,一般每个线程分配内存的特性是比较稳定的。这里的比较稳定指的是,每次分配对象的大小,每轮 GC 分配区间内的分配对象的个数以及总大小。所以,我们可以考虑每个线程分配内存后,就将这块内存保留起来,用于下次分配,这样就不用每次从主内存中分配了。如果能估算每轮 GC 内每个线程使用的内存大小,则可以提前分配好内存给线程,这样就更能提高分配效率。这种内存分配的实现方式,在 JVM 中就是 TLAB (Thread Local Allocate Buffer)。

3. JVM 对象堆内存分配流程简述

image

我们这里不考虑栈上分配,这些会在 JIT 的章节详细分析,我们这里考虑的是无法栈上分配需要共享的对象

对于 HotSpot JVM 实现,所有的 GC 算法的实现都是一种对于堆内存的管理,也就是都实现了一种堆的抽象,它们都实现了接口 CollectedHeap。当分配一个对象堆内存空间时,在 CollectedHeap 上首先都会检查是否启用了 TLAB,如果启用了,则会尝试 TLAB 分配;如果当前线程的 TLAB 大小足够,那么从线程当前的 TLAB 中分配;如果不够,但是当前 TLAB 剩余空间小于最大浪费空间限制(这是一个动态的值,我们后面会详细分析),则从堆上(一般是 Eden 区) 重新申请一个新的 TLAB 进行分配。否则,直接在 TLAB 外进行分配。TLAB 外的分配策略,不同的 GC 算法不同。例如G1:

上一篇下一篇

猜你喜欢

热点阅读