二分查找
2019-08-15 本文已影响0人
7i昂
二分查找是一种查询效率非常高的查找算法。又称折半查找。
起初在数据结构中学习递归时实现二分查找,实际上不用递归也可以实现,毕竟递归是需要开辟额外的空间的来辅助查询。本文就介绍两种方法
二分查找算法思想
有序的序列,每次都是以序列的中间位置的数来与待查找的关键字进行比较,每次缩小一半的查找范围,直到匹配成功。
一个情景:将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分查找图示说明
图片来源百度图片,感谢分享者
image二分查找优缺点
优点是比较次数少,查找速度快,平均性能好;
其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
使用条件:查找序列是顺序结构,有序。
java代码实现
使用递归实现
/**
* 使用递归的二分查找
*title:recursionBinarySearch
*@param arr 有序数组
*@param key 待查找关键字
*@return 找到的位置
*/
public static int recursionBinarySearch(int[] arr,int key,int low,int high){
if(key < arr[low] || key > arr[high] || low > high){
return -1;
}
int middle = (low + high) / 2; //初始中间位置
if(arr[middle] > key){
//比关键字大则关键字在左区域
return recursionBinarySearch(arr, key, low, middle - 1);
}else if(arr[middle] < key){
//比关键字小则关键字在右区域
return recursionBinarySearch(arr, key, middle + 1, high);
}else {
return middle;
}
}
不使用递归实现(while循环)
/**
* 不使用递归的二分查找
*title:commonBinarySearch
*@param arr
*@param key
*@return 关键字位置
*/
public static int commonBinarySearch(int[] arr,int key){
int low = 0;
int high = arr.length - 1;
int middle = 0; //定义middle
if(key < arr[low] || key > arr[high] || low > high){
return -1;
}
while(low <= high){
middle = (low + high) / 2;
if(arr[middle] > key){
//比关键字大则关键字在左区域
high = middle - 1;
}else if(arr[middle] < key){
//比关键字小则关键字在右区域
low = middle + 1;
}else{
return middle;
}
}
return -1; //最后仍然没有找到,则返回-1
}