Btcd区块在P2P网络上的传播之ConnMgr
上一篇文章我们介绍了Peer收发消息的机制,它是以Peer之间建立TCP连接为前提的;本文将介绍Peer之间如何建立及维护TCP接连。节点之间可以直接建立连接,也可以通过代理(Proxy)连接;特别地,它们之间还可以通过洋葱代理(Onion Proxy)建立TCP连接,节点也可以将自己隐藏在“暗网”中以洋葱地址的(.onion address)的形式供其他节点连接。接下来,我们将通过代码来分析这些连接方式是如何实现的。
btcd/connmgr包中的文件包括:
- connmanager.go: 处理建立新的连接、通知连接状态、重连及断开连接等主要逻辑;
- dynamicbanscore.go:实现了一个动态计分器,用于记录Peer之间消息交换的频率,当分数大于设定的门限时会主动断开连接,这是为了防止类似于DDoS攻击;
- seed.go: 负责将内置于全节点客户端里的种子节点的地址解析成Bitcoin协议里定义的网络地址;
- tor.go: 通过洋葱代理建立连接的节点,需要在Tor网络上的最后一跳,即退出节点(exit node)上进行DNS解析,然后将解析结果通过洋葱代理返回给节点,tor.go主要实现了通过洋葱代理进行DNS解析的SOCKS消息交换。需要注意的是,这里的DNS解析并不是解析洋葱地址,而是解析公网上的域名或者hostname,解析洋葱地址是不能成功而且无意义的。
- log.go: 提供logger初始化及设定logger等方法;
- doc.go: 包btcd/connmgr的doc文件;
- connmanager_test.go、dynamicbanscore_test.go: 定义了相应的Test方法;
通过代理或者洋葱代理进行TCP连接的代码位于btcsuite/go-socks(btcd项目的btcsuite/btcd/vendor/github.com/btcsuite/go-socks目录),它实现了SOCKS 5协议的client部分,包含的文件有:
- addr.go: 定义了ProxiedAddr,用于描述代理的外部地址,包括网络类型(如tcp),主机名或地址及端口号;
- conn.go: 定义了proxiedConn,用于描述被代理的连接,提供了读、写代理连接的方法等;
- dial.go: 实现了建立代理连接的逻辑;
虽然ConnMgr支持通过洋葱代理与“明网”或者“暗网”中的节点连接,但本文暂不深入介绍Tor网络相关的知识,我们将在后文《Bitcoin网络与Tor网络的匿名性讨论》中详细介绍。接下来,我们先分析btcd/connmgr来了解连接建立及管理的机制,然后分析btcsuite/go-socks来了解通过代理进行连接的过程。btcd/connmgr中的主要类型包括: ConnManager、Config和ConnReq,它们的定义如下:
//btcd/connmgr/connmanager.go
// ConnManager provides a manager to handle network connections.
type ConnManager struct {
// The following variables must only be used atomically.
connReqCount uint64
start int32
stop int32
cfg Config
wg sync.WaitGroup
failedAttempts uint64
requests chan interface{}
quit chan struct{}
}
各字段的意义如下:
- connReqCount: 记录主动连接其他节点的连接数量;
- start: 标识connmgr已经启动;
- stop: 标识connmgr已经结束;
- cfg: 设定相关的配置,在Config的定义中介绍;
- wg: 用于同步connmgr的退出状态,调用方可以阻塞等待connmgr的工作协程退出;
- failedAttempts: 某个连接失败后,ConnMgr尝试选择新的Peer地址连接的总次数;
- requests:用于与connmgr工作协程通信的管道;
- quit: 用于通知工作协程退出;
ConnManager依赖于Config:
//btcd/connmgr/connmanager.go
// Config holds the configuration options related to the connection manager.
type Config struct {
// Listeners defines a slice of listeners for which the connection
// manager will take ownership of and accept connections. When a
// connection is accepted, the OnAccept handler will be invoked with the
// connection. Since the connection manager takes ownership of these
// listeners, they will be closed when the connection manager is
// stopped.
//
// This field will not have any effect if the OnAccept field is not
// also specified. It may be nil if the caller does not wish to listen
// for incoming connections.
Listeners []net.Listener
// OnAccept is a callback that is fired when an inbound connection is
// accepted. It is the caller's responsibility to close the connection.
// Failure to close the connection will result in the connection manager
// believing the connection is still active and thus have undesirable
// side effects such as still counting toward maximum connection limits.
//
// This field will not have any effect if the Listeners field is not
// also specified since there couldn't possibly be any accepted
// connections in that case.
OnAccept func(net.Conn)
// TargetOutbound is the number of outbound network connections to
// maintain. Defaults to 8.
TargetOutbound uint32
// RetryDuration is the duration to wait before retrying connection
// requests. Defaults to 5s.
RetryDuration time.Duration
// OnConnection is a callback that is fired when a new outbound
// connection is established.
OnConnection func(*ConnReq, net.Conn)
// OnDisconnection is a callback that is fired when an outbound
// connection is disconnected.
OnDisconnection func(*ConnReq)
// GetNewAddress is a way to get an address to make a network connection
// to. If nil, no new connections will be made automatically.
GetNewAddress func() (net.Addr, error)
// Dial connects to the address on the named network. It cannot be nil.
Dial func(net.Addr) (net.Conn, error)
}
各字段意义如下:
- Listeners: 节点上所有等待外部连接的监听点;
- OnAccept: 节点应答并接受外部连接后的回调函数;
- TargetOutbound:节点主动向外连接Peer的最大个数;
- RetryDuration: 连接失败后发起重连的等待时间,默认为5s,默认的最大重连等待时间为5min;
- OnConnection: 连接建立成功后的回调函数;
- OnDisconnection: 连接关闭后的回调函数;
- GetNewAddress: 连接失败后,ConnMgr可能会选择新的Peer进行连接,GetNewAddress函数提供获取新Peer地址的方法,它最终会调用addrManager的GetAddress()来分配新地址,我们将在介绍addrmgr时详细介绍;
- Dial: 定义建立TCP连接的方式,是直连还是通过代理连接;
ConnReq描述了一个连接,它的定义如下:
//btcd/connmgr/connmanager.go
// ConnReq is the connection request to a network address. If permanent, the
// connection will be retried on disconnection.
type ConnReq struct {
// The following variables must only be used atomically.
id uint64
Addr net.Addr
Permanent bool
conn net.Conn
state ConnState
stateMtx sync.RWMutex
retryCount uint32
}
- id: 连接的序号,用于索引;
- Addr: 连接的目的地址;
- Permanent: 标识是否与Peer保持永久连接,如果为true,则连接失败后,继续尝试与该Peer连接,而不是选择新的Peer地址重新连接;
- conn: 连接成功后,真实的net.Conn对象;
- state: 连接的状态,有ConnPending、ConnEstablished、ConnDisconnected及ConnFailed等;
- stateMtx: 保护state状态的读写锁;
- retryCount: 如果Permanent为true,retryCount记录该连接重复重连的次数;
我们先从ConnManager的Start()方法入手来分析它的工作机制:
//btcd/connmgr/connmanager.go
// Start launches the connection manager and begins connecting to the network.
func (cm *ConnManager) Start() {
// Already started?
if atomic.AddInt32(&cm.start, 1) != 1 {
return
}
log.Trace("Connection manager started")
cm.wg.Add(1)
go cm.connHandler() (1)
// Start all the listeners so long as the caller requested them and
// provided a callback to be invoked when connections are accepted.
if cm.cfg.OnAccept != nil {
for _, listner := range cm.cfg.Listeners {
cm.wg.Add(1)
go cm.listenHandler(listner) (2)
}
}
for i := atomic.LoadUint64(&cm.connReqCount); i < uint64(cm.cfg.TargetOutbound); i++ {
go cm.NewConnReq() (3)
}
}
可以看出,ConnMgr启动时主要有如下过程:
- 启动工作协程connHandler;
- 启动监听协程listenHandler,等待其他节点连接;
- 启动建立连接的协程,选择Peer地址并主动连接;
ConnMgr中各协程及其通信的channel示意如下图所示:
其中caller是指调用协程,onConnect、OnDisconnect和OnAccept均在新的协程中回调,以免阻塞ConnMgr的工作协程和监听协程。在开始分析上述三个协程之前,我们先来看看Connect()和Disconnect()方法了解建立和断开连接的实现:
//btcd/connmgr/connmanager.go
// Connect assigns an id and dials a connection to the address of the
// connection request.
func (cm *ConnManager) Connect(c *ConnReq) {
......
conn, err := cm.cfg.Dial(c.Addr)
if err != nil {
cm.requests <- handleFailed{c, err}
} else {
cm.requests <- handleConnected{c, conn}
}
}
// Disconnect disconnects the connection corresponding to the given connection
// id. If permanent, the connection will be retried with an increasing backoff
// duration.
func (cm *ConnManager) Disconnect(id uint64) {
if atomic.LoadInt32(&cm.stop) != 0 {
return
}
cm.requests <- handleDisconnected{id, true}
}
可以看出,建立连接的过程就是调用指定的Dial()方法来进行TCP握手,如果与Peer直连(指不经过代理),则直接调用net.Dial()进行连接;如果通过代理与Peer连接,则会调用SOCKS Proxy的Dial()方法,我们将在分析go-socks中看到。然后,根据是否连接成功向connHandler发送成功或者失败的消息,让connHandler进一步处理。调用Disconnect断开连接则向connHandler发送handleDisconnected消息让connHandler进一步处理。看来,连接或者断开连接的主要处理逻辑在connHandler中,我们来看看它的实现:
//btcd/connmgr/connmanager.go
// connHandler handles all connection related requests. It must be run as a
// goroutine.
//
// The connection handler makes sure that we maintain a pool of active outbound
// connections so that we remain connected to the network. Connection requests
// are processed and mapped by their assigned ids.
func (cm *ConnManager) connHandler() {
conns := make(map[uint64]*ConnReq, cm.cfg.TargetOutbound)
out:
for {
select {
case req := <-cm.requests:
switch msg := req.(type) {
case handleConnected:
connReq := msg.c
connReq.updateState(ConnEstablished)
connReq.conn = msg.conn
conns[connReq.id] = connReq
log.Debugf("Connected to %v", connReq)
connReq.retryCount = 0
cm.failedAttempts = 0
if cm.cfg.OnConnection != nil {
go cm.cfg.OnConnection(connReq, msg.conn)
}
case handleDisconnected:
if connReq, ok := conns[msg.id]; ok {
connReq.updateState(ConnDisconnected)
if connReq.conn != nil {
connReq.conn.Close()
}
log.Debugf("Disconnected from %v", connReq)
delete(conns, msg.id)
if cm.cfg.OnDisconnection != nil {
go cm.cfg.OnDisconnection(connReq)
}
if uint32(len(conns)) < cm.cfg.TargetOutbound && msg.retry {
cm.handleFailedConn(connReq)
}
} else {
log.Errorf("Unknown connection: %d", msg.id)
}
case handleFailed:
connReq := msg.c
connReq.updateState(ConnFailed)
log.Debugf("Failed to connect to %v: %v", connReq, msg.err)
cm.handleFailedConn(connReq)
}
case <-cm.quit:
break out
}
}
cm.wg.Done()
log.Trace("Connection handler done")
}
connHandler主要处理连接建立成功、失败和断连这三种情况:
- 如果连接成功,首先更新连接的状态为ConnEstablished,同时将该连接添加到conns中以跟踪它的后续状态,并将retryCount和failedAttempts重置,随后在新的goroutine中回调OnConnection;
- 如果要断开连接,先从conns找到要断开的connReq,更新连接状态为ConnDisconnected,调用net.Conn的Close()方法断开TCP连接,随后在新的goroutine中回调OnDisconnection;最后,如果是当前的活跃连接数少于设定的最大门限且retry设为true,则调用handleFailedConn进行重连或者选择新的Peer连接;
- 如果连接失败,则将连接状态更新为ConnFailed,同时调用handleFailedConn进行重连或者选择新的Peer连接;
需要注意的是,ConnMgr只处理了连接建立成功或者失败的情况,并没有专门处理连接成功一段时间后连接中断的情况,这是因为TCP socket虽然有keepalive选项开启心跳,但并没有心跳超时的回调,只有当调用write()方法写入数据返回错误时才能检测到连接中断,所以一般需要应用层协议通过心跳的方式检测网络中断的情形。我们在《Btcd区块在P2P网络上的传播之Peer》中介绍过,Peer之间会发送Ping/Pong心跳来维持及检测连接。如果Pong消息超时或者outHandler向net.Conn写数据出错时,Peer的Disconnect()方法会被调用以主动断开连接,并退出Peer的工作协程。当Peer连接建立成功并回调OnConnect()时,server会新起一个goroutine守护与Peer的连接状态;当Peer断连并退出时,server随即会调用ConnMgr的Disconnect()方法以清除该连接。
接下来,我们看看handleFailedConn的实现:
//btcd/connmgr/connmanager.go
// handleFailedConn handles a connection failed due to a disconnect or any
// other failure. If permanent, it retries the connection after the configured
// retry duration. Otherwise, if required, it makes a new connection request.
// After maxFailedConnectionAttempts new connections will be retried after the
// configured retry duration.
func (cm *ConnManager) handleFailedConn(c *ConnReq) {
if atomic.LoadInt32(&cm.stop) != 0 {
return
}
if c.Permanent {
c.retryCount++
d := time.Duration(c.retryCount) * cm.cfg.RetryDuration
if d > maxRetryDuration {
d = maxRetryDuration
}
log.Debugf("Retrying connection to %v in %v", c, d)
time.AfterFunc(d, func() {
cm.Connect(c)
})
} else if cm.cfg.GetNewAddress != nil {
cm.failedAttempts++
if cm.failedAttempts >= maxFailedAttempts {
......
time.AfterFunc(cm.cfg.RetryDuration, func() {
cm.NewConnReq()
})
} else {
go cm.NewConnReq()()
}
}
}
handleFailedConn主要处理重连逻辑,它的主要思想为:
- 如果连接的Permanent为true,即该连接为“持久”连接,连接失败进需要重连;需要注意的时,重连的等待时间是与重连的次数成正比的,即第1次重连需等待5s,第2次重连需要等待10s,以次类推,最大等待时间为5min;
- 如果连接不是“持久”连接,则选择新的Peer进行连接,如果尝试新连接的次数超限(默认为25次),则表明节点的出口网络可能断连,需要延时连接,默认延时5s;
动态选择Peer并发起连接的过程在NewConnReq()中实现:
//btcd/connmgr/connmanager.go
/ NewConnReq creates a new connection request and connects to the
// corresponding address.
func (cm *ConnManager) NewConnReq() {
......
c := &ConnReq{}
atomic.StoreUint64(&c.id, atomic.AddUint64(&cm.connReqCount, 1))
addr, err := cm.cfg.GetNewAddress()
if err != nil {
cm.requests <- handleFailed{c, err}
return
}
c.Addr = addr
cm.Connect(c)
}
其主要过程为:
- 新建ConnReq对象,并为其分配一个id;
- 通过GetNewAddress()从addrmgr维护的地址仓库中随机选择一个Peer的可达地址,如果地址选择失败,则由connHandler再次发起新的连接;
- 调用Connect()方法开始与Peer建立连接;
上面各方法已经展示了ConnMgr主动与Peer建立连接,及失败后重连或者选择新地址连接的过程,接下来,我们通过listenHandler来看它被动等待连接的实现:
//btcd/connmgr/connmanager.go
// listenHandler accepts incoming connections on a given listener. It must be
// run as a goroutine.
func (cm *ConnManager) listenHandler(listener net.Listener) {
log.Infof("Server listening on %s", listener.Addr())
for atomic.LoadInt32(&cm.stop) == 0 {
conn, err := listener.Accept()
if err != nil {
// Only log the error if not forcibly shutting down.
if atomic.LoadInt32(&cm.stop) == 0 {
log.Errorf("Can't accept connection: %v", err)
}
continue
}
go cm.cfg.OnAccept(conn)
}
cm.wg.Done()
log.Tracef("Listener handler done for %s", listener.Addr())
}
可以看出,listenHandler主要是等待连接,连接成功后在新协程中回调OnAccept。实际上,OnConnect和OnAccept回调将在server中实现,而是创建Peer并调用Peer的AssociateConnection()方法的入口,我们将在分析server.go中详细介绍。
以上就是ConnMgr建立及维护连接的主要过程。接下来,我们来分析用于防止DDoS攻击的动态计分器是如何实现的,先看DynamicBanScore的定义:
//btcd/connmgr/dynamicbanscore.go
// DynamicBanScore provides dynamic ban scores consisting of a persistent and a
// decaying component. The persistent score could be utilized to create simple
// additive banning policies similar to those found in other bitcoin node
// implementations.
//
// The decaying score enables the creation of evasive logic which handles
// misbehaving peers (especially application layer DoS attacks) gracefully
// by disconnecting and banning peers attempting various kinds of flooding.
// DynamicBanScore allows these two approaches to be used in tandem.
//
// Zero value: Values of type DynamicBanScore are immediately ready for use upon
// declaration.
type DynamicBanScore struct {
lastUnix int64
transient float64
persistent uint32
mtx sync.Mutex
}
其各字段意义如下:
- lastUnix: 上一次调整分值的Unix时间点;
- transient: 分值的浮动衰减部分;
- persistent: 分值中不会自动衰减的部分;
- mtx: 保护transient和persistent的互斥锁;
从上面的定义看,DynamicBanScore提供的分值是由一个不变值和瞬时值构成的,那么这两值到底是如何起作用的呢,我们可以看看它的int()方法:
//btcd/connmgr/dynamicbanscore.go
// int returns the ban score, the sum of the persistent and decaying scores at a
// given point in time.
//
// This function is not safe for concurrent access. It is intended to be used
// internally and during testing.
func (s *DynamicBanScore) int(t time.Time) uint32 {
dt := t.Unix() - s.lastUnix
if s.transient < 1 || dt < 0 || Lifetime < dt {
return s.persistent
}
return s.persistent + uint32(s.transient*decayFactor(dt))
}
可以看出,最后的分值等于persistent加上transient乘以一个衰减系数后的和。其中衰减系数随时间变化,它由decayFactor()决定:
//btcd/connmgr/dynamicbanscore.go
// decayFactor returns the decay factor at t seconds, using precalculated values
// if available, or calculating the factor if needed.
func decayFactor(t int64) float64 {
if t < precomputedLen {
return precomputedFactor[t]
}
return math.Exp(-1.0 * float64(t) * lambda)
}
可以看出,衰减系数是按时间间隔呈指数分布的,其中Lambda=ln2/60。动态分值随时间时隔变化的曲线如下图所示:
这里的时间间隔是指当前取值时刻距上一次主动调节persistent或者transistent值的时间差。
//btcd/connmgr/dynamicbanscore.go
// increase increases the persistent, the decaying or both scores by the values
// passed as parameters. The resulting score is calculated as if the action was
// carried out at the point time represented by the third parameter. The
// resulting score is returned.
//
// This function is not safe for concurrent access.
func (s *DynamicBanScore) increase(persistent, transient uint32, t time.Time) uint32 {
s.persistent += persistent
tu := t.Unix()
dt := tu - s.lastUnix
if transient > 0 {
if Lifetime < dt {
s.transient = 0
} else if s.transient > 1 && dt > 0 {
s.transient *= decayFactor(dt)
}
s.transient += float64(transient)
s.lastUnix = tu
}
return s.persistent + uint32(s.transient)
}
可以看出,主动调节score值时,先将persistent值直接相加,然后算出传入时刻t的transient值,再与传入的transient值相加后得到新的transient值,新的persistent与新的transient值相加后得到新的score。实际上,就是t时刻的score加上传入的persistent和transient即得到新的score。
Peer之间交换消息时,每一个Peer连接会有一个动态计分器来监控它们之间收发消息的频率,太频繁地收到某个Peer发过来的消息时,将被怀疑遭到DDoS攻击,从而主动断开与它的连接,我们将在分析协议消息的收发时看到这一点。
通过前面的分析,我们知道ConnMgr会通过GetNewAddress()来选取Peer的地址,但一个新的节点接入时,它还没有与任何Peer交换过地址信息,所以它的地址仓库是空的,那它该与哪些节点先建立连接呢?实际上,节点会内置一些种子节点的地址:
//btcd/chaincfg/params.go
// MainNetParams defines the network parameters for the main Bitcoin network.
var MainNetParams = Params{
Name: "mainnet",
Net: wire.MainNet,
DefaultPort: "8333",
DNSSeeds: []DNSSeed{
{"seed.bitcoin.sipa.be", true},
{"dnsseed.bluematt.me", true},
{"dnsseed.bitcoin.dashjr.org", false},
{"seed.bitcoinstats.com", true},
{"seed.bitnodes.io", false},
{"seed.bitcoin.jonasschnelli.ch", true},
},
......
}
Btcd节点内置了如上6个种子节点的域名。然而,在ConnMgr连接种子节点之前,必须进行DNS Lookup查询它们对应的IP地址,这是在SeedFromDNS()中完成的:
//btcd/connmgr/seed.go
// SeedFromDNS uses DNS seeding to populate the address manager with peers.
func SeedFromDNS(chainParams *chaincfg.Params, reqServices wire.ServiceFlag,
lookupFn LookupFunc, seedFn OnSeed) {
for _, dnsseed := range chainParams.DNSSeeds {
var host string
if !dnsseed.HasFiltering || reqServices == wire.SFNodeNetwork {
host = dnsseed.Host
} else {
host = fmt.Sprintf("x%x.%s", uint64(reqServices), dnsseed.Host)
}
go func(host string) {
randSource := mrand.New(mrand.NewSource(time.Now().UnixNano()))
seedpeers, err := lookupFn(host) (1)
if err != nil {
log.Infof("DNS discovery failed on seed %s: %v", host, err)
return
}
numPeers := len(seedpeers)
log.Infof("%d addresses found from DNS seed %s", numPeers, host)
if numPeers == 0 {
return
}
addresses := make([]*wire.NetAddress, len(seedpeers))
// if this errors then we have *real* problems
intPort, _ := strconv.Atoi(chainParams.DefaultPort)
for i, peer := range seedpeers {
addresses[i] = wire.NewNetAddressTimestamp( (2)
// bitcoind seeds with addresses from
// a time randomly selected between 3
// and 7 days ago.
time.Now().Add(-1*time.Second*time.Duration(secondsIn3Days+
randSource.Int31n(secondsIn4Days))),
0, peer, uint16(intPort))
}
seedFn(addresses)
}(host)
}
}
它的主要步骤为:
- 调用lookupFn()进行DNS resolve,将种子节点的域名解析了IP地址;
- 将种子节点的IP地址封装为协议地址wire.NetAddress,其中主要是增加了地址的时效性,这里将地址的时效随机地设为3到7天。
这里传入的lookupFn()根据配置,有可能是节点自己访问DNS Server解析,也有可能通过洋葱代理进行解析:
//btcd/config.go
func loadConfig() (*config, []string, error) {
......
// Setup dial and DNS resolution (lookup) functions depending on the
// specified options. The default is to use the standard
// net.DialTimeout function as well as the system DNS resolver. When a
// proxy is specified, the dial function is set to the proxy specific
// dial function and the lookup is set to use tor (unless --noonion is
// specified in which case the system DNS resolver is used).
cfg.dial = net.DialTimeout
cfg.lookup = net.LookupIP
if cfg.Proxy != "" {
_, _, err := net.SplitHostPort(cfg.Proxy)
......
// Tor isolation flag means proxy credentials will be overridden
// unless there is also an onion proxy configured in which case
// that one will be overridden.
torIsolation := false
if cfg.TorIsolation && cfg.OnionProxy == "" &&
(cfg.ProxyUser != "" || cfg.ProxyPass != "") {
torIsolation = true
fmt.Fprintln(os.Stderr, "Tor isolation set -- "+
"overriding specified proxy user credentials")
}
proxy := &socks.Proxy{
Addr: cfg.Proxy,
Username: cfg.ProxyUser,
Password: cfg.ProxyPass,
TorIsolation: torIsolation,
}
cfg.dial = proxy.DialTimeout
// Treat the proxy as tor and perform DNS resolution through it
// unless the --noonion flag is set or there is an
// onion-specific proxy configured.
if !cfg.NoOnion && cfg.OnionProxy == "" {
cfg.lookup = func(host string) ([]net.IP, error) {
return connmgr.TorLookupIP(host, cfg.Proxy)
}
}
}
// Setup onion address dial function depending on the specified options.
// The default is to use the same dial function selected above. However,
// when an onion-specific proxy is specified, the onion address dial
// function is set to use the onion-specific proxy while leaving the
// normal dial function as selected above. This allows .onion address
// traffic to be routed through a different proxy than normal traffic.
if cfg.OnionProxy != "" {
_, _, err := net.SplitHostPort(cfg.OnionProxy)
......
cfg.oniondial = func(network, addr string, timeout time.Duration) (net.Conn, error) {
proxy := &socks.Proxy{
Addr: cfg.OnionProxy,
Username: cfg.OnionProxyUser,
Password: cfg.OnionProxyPass,
TorIsolation: cfg.TorIsolation,
}
return proxy.DialTimeout(network, addr, timeout)
}
// When configured in bridge mode (both --onion and --proxy are
// configured), it means that the proxy configured by --proxy is
// not a tor proxy, so override the DNS resolution to use the
// onion-specific proxy.
if cfg.Proxy != "" {
cfg.lookup = func(host string) ([]net.IP, error) {
return connmgr.TorLookupIP(host, cfg.OnionProxy)
}
}
} else {
cfg.oniondial = cfg.dial
}
// Specifying --noonion means the onion address dial function results in
// an error.
if cfg.NoOnion {
cfg.oniondial = func(a, b string, t time.Duration) (net.Conn, error) {
return nil, errors.New("tor has been disabled")
}
}
......
}
从上述代码可以看出:
- 默认的DNS Lookup和Dial方法就是标准的net.LookupIP和net.DialTimeout;
- 如果设置了代理,Dial方法将使用SOCKS Proxy的DialTimeout(),如果未禁用洋葱代理,则默认代理为洋葱代理,DNS查询将通过connmgr的TorLookupIP()实现;
- 如果专门设置了洋葱代理,则设定对“暗网”服务(hidden service)的连接采用SOCKS Proxy的DialTimeout(),DNS Lookup将使用connmgr的TorLookupIP();请注意,即使设置了洋葱代理,对“明网”地址的连接仍是根据是否设置了普通SOCKS代理(非Tor代理)来决定采用标准的net.DialTimeout还是Proxy的DialTimeout;
无论是通过普通代理还是洋葱代理连接Peer,对节点来讲,它们均是SOCKS代理服务器,节点与它们之间通过SOCKS协议来通信。与普通代理相比,洋葱代理扩展了SOCKS协议,加入了对Name lookup、Stream Isolation等的支持。SOCKS协议位于会话层,在传输层与应用层之间,所以它不仅可以代理HTTP流量,也可以代理如FTP、XMPP等等的其他应用流量。SOCKS协议比较简单,我们不再展开介绍,读者可以阅读RFC1928及RFC1929来了解它的消息格式。为了了解Btcd如何通过SOCKS代理建立连接,我们来看看Proxy的dial()方法:
//btcd/vendor/github.com/btcsuite/go-socks/dial.go
func (p *Proxy) dial(network, addr string, timeout time.Duration) (net.Conn, error) {
host, strPort, err := net.SplitHostPort(addr)
if err != nil {
return nil, err
}
port, err := strconv.Atoi(strPort)
if err != nil {
return nil, err
}
conn, err := net.DialTimeout("tcp", p.Addr, timeout) (1)
if err != nil {
return nil, err
}
var user, pass string
if p.TorIsolation { (2)
var b [16]byte
_, err := io.ReadFull(rand.Reader, b[:])
if err != nil {
conn.Close()
return nil, err
}
user = hex.EncodeToString(b[0:8])
pass = hex.EncodeToString(b[8:16])
} else {
user = p.Username
pass = p.Password
}
buf := make([]byte, 32+len(host)+len(user)+len(pass))
// Initial greeting
buf[0] = protocolVersion (3)
if user != "" {
buf = buf[:4]
buf[1] = 2 // num auth methods
buf[2] = authNone
buf[3] = authUsernamePassword
} else {
buf = buf[:3]
buf[1] = 1 // num auth methods
buf[2] = authNone
}
_, err = conn.Write(buf)
if err != nil {
conn.Close()
return nil, err
}
// Server's auth choice
if _, err := io.ReadFull(conn, buf[:2]); err != nil {
conn.Close()
return nil, err
}
if buf[0] != protocolVersion {
conn.Close()
return nil, ErrInvalidProxyResponse
}
err = nil
switch buf[1] {
default:
err = ErrInvalidProxyResponse
case authUnavailable:
err = ErrNoAcceptableAuthMethod
case authGssApi:
err = ErrNoAcceptableAuthMethod
case authUsernamePassword:
buf = buf[:3+len(user)+len(pass)] (4)
buf[0] = 1 // version
buf[1] = byte(len(user))
copy(buf[2:], user)
buf[2+len(user)] = byte(len(pass))
copy(buf[3+len(user):], pass)
if _, err = conn.Write(buf); err != nil {
conn.Close()
return nil, err
}
if _, err = io.ReadFull(conn, buf[:2]); err != nil {
conn.Close()
return nil, err
}
if buf[0] != 1 { // version
err = ErrInvalidProxyResponse
} else if buf[1] != 0 { // 0 = succes, else auth failed
err = ErrAuthFailed
}
case authNone:
// Do nothing
}
if err != nil {
conn.Close()
return nil, err
}
// Command / connection request
buf = buf[:7+len(host)] (5)
buf[0] = protocolVersion
buf[1] = commandTcpConnect
buf[2] = 0 // reserved
buf[3] = addressTypeDomain
buf[4] = byte(len(host))
copy(buf[5:], host)
buf[5+len(host)] = byte(port >> 8)
buf[6+len(host)] = byte(port & 0xff)
if _, err := conn.Write(buf); err != nil {
conn.Close()
return nil, err
}
// Server response
if _, err := io.ReadFull(conn, buf[:4]); err != nil {
conn.Close()
return nil, err
}
if buf[0] != protocolVersion {
conn.Close()
return nil, ErrInvalidProxyResponse
}
if buf[1] != statusRequestGranted {
conn.Close()
err := statusErrors[buf[1]]
if err == nil {
err = ErrInvalidProxyResponse
}
return nil, err
}
paddr := &ProxiedAddr{Net: network}
switch buf[3] { (6)
default:
conn.Close()
return nil, ErrInvalidProxyResponse
case addressTypeIPv4:
if _, err := io.ReadFull(conn, buf[:4]); err != nil {
conn.Close()
return nil, err
}
paddr.Host = net.IP(buf).String()
case addressTypeIPv6:
if _, err := io.ReadFull(conn, buf[:16]); err != nil {
conn.Close()
return nil, err
}
paddr.Host = net.IP(buf).String()
case addressTypeDomain:
if _, err := io.ReadFull(conn, buf[:1]); err != nil {
conn.Close()
return nil, err
}
domainLen := buf[0]
if _, err := io.ReadFull(conn, buf[:domainLen]); err != nil {
conn.Close()
return nil, err
}
paddr.Host = string(buf[:domainLen])
}
if _, err := io.ReadFull(conn, buf[:2]); err != nil {
conn.Close()
return nil, err
}
paddr.Port = int(buf[0])<<8 | int(buf[1])
return &proxiedConn{ (7)
conn: conn,
boundAddr: paddr,
remoteAddr: &ProxiedAddr{network, host, port},
}, nil
}
由于Btcd节点之间均通过TCP连接,因此这里实现的是SOCKS代理TCP连接的情形。建立代理连接的主要步骤为:
- 与SOCKS代理服务器建立TCP连接,如代码(1)处所示;
- 客户端向代理服务器发送协议版本和METHOD集合的协商请求,如代码(3)处所示,客户端选择版本5,选择的认证方法为不验证或者用户名/密码验证,或者仅仅是不认证;
- 然后等待SOCKS服务器响应。如果SOCKS服务器不支持SOCKS 5,则协商失败;如果SOCKS服务器支持SOCKS 5,并同意不验证,则客户端可以直接发送后续请求,如果SOCKS服务器指定采用用户名/密码认证,则客户端随后向服务器提交用户名和密码,服务器将验证并返回结果,如代码(4)所示;
- 无需要认证或者用户名/密码验证通过后,客户端向SOCKS服务器发送CONNECT请求,并指明目的IP和端口号,如代码(5)处所示;
- SOCKS服务器响应CONNECT请求,如果代理连接成功,则返回外部的代理地址和端口。根据响应消息中指明的代理地址类型,代理地址可能是IPv4、IPv6或者Domain Name。
- 创建并返回一个代理连接对象proxiedConn,它的conn字段描述客户端与SOCKS服务器的TCP连接,该连接上的TCP报文将通过代理服务器转发给目的地址,boundAddr描述代理的外部地址和端口,remoteAddr描述目的地址与端口。
特别地,如果客户端连接一个Tor代理,并且希望开启Stream Isolation特性,则随机生成用户名和密码并发往Tor代理服务器。Stream Isolation是为了禁止Tor网络在同一个“虚电路”上中继不同的TCP流,Tor代理服务器支持通过IsolateClientAddr、IsolateSOCKSAuth、IsolateClientProtocol、IsolateDestPort及IsolateDestAddr等方式来标识不同的TCP流。Btcd选择通过IsolateSOCKSAuth来支持Stream Isolation,使得同一节点在连接不同Peer或者重连相同Peer时的TCP在Tor网络中均能被“隔离”。然而,读者可能会产生疑问: 随机生成的用户名和密码如何被Tor代理服务器验证?实际上,Btcd这里使用随机用户名和密码,是要求Tor代理服务器作如下配置: 选择“NO AUTHENTICATION REQUIRED”作为验证方式,并且只通过username来标识不同代理请求。
了解了通过SOCKS代理或者Tor代理与Peer建立TCP连接的机制后,我们就可以来看看如何通过Tor代理来进行DNS查询。再次强调一下,通过Tor代理进行DNS查询不是解析洋葱地址,而是解析“明网”中的域名。例如,用户通过Tor代理访问www.google.com时,用户可以选择先通过DNS查询到IP地址后,再通过Tor代理连接该IP地址;也可以将该域名作为目的地址发给Tor代理,让Tor网络的退出结点进行DNS查询,并建立与目的地址的连接。如果某些客户端不希望向DNS Server暴露自己的目标访问域名,同时又希望进行域名解析,那它可以通过Tor代理进行DNS解析。
//btcd/connmgr/tor.go
// TorLookupIP uses Tor to resolve DNS via the SOCKS extension they provide for
// resolution over the Tor network. Tor itself doesn't support ipv6 so this
// doesn't either.
func TorLookupIP(host, proxy string) ([]net.IP, error) {
conn, err := net.Dial("tcp", proxy)
if err != nil {
return nil, err
}
defer conn.Close()
buf := []byte{'\x05', '\x01', '\x00'} (1)
_, err = conn.Write(buf)
if err != nil {
return nil, err
}
buf = make([]byte, 2)
_, err = conn.Read(buf)
if err != nil {
return nil, err
}
if buf[0] != '\x05' {
return nil, ErrTorInvalidProxyResponse
}
if buf[1] != '\x00' {
return nil, ErrTorUnrecognizedAuthMethod
}
buf = make([]byte, 7+len(host))
buf[0] = 5 // protocol version
buf[1] = '\xF0' // Tor Resolve (2)
buf[2] = 0 // reserved
buf[3] = 3 // Tor Resolve
buf[4] = byte(len(host))
copy(buf[5:], host)
buf[5+len(host)] = 0 // Port 0
_, err = conn.Write(buf)
if err != nil {
return nil, err
}
buf = make([]byte, 4)
_, err = conn.Read(buf)
if err != nil {
return nil, err
}
if buf[0] != 5 {
return nil, ErrTorInvalidProxyResponse
}
if buf[1] != 0 {
if int(buf[1]) >= len(torStatusErrors) {
return nil, ErrTorInvalidProxyResponse
} else if err := torStatusErrors[buf[1]]; err != nil {
return nil, err
}
return nil, ErrTorInvalidProxyResponse
}
if buf[3] != 1 { (3)
err := torStatusErrors[torGeneralError]
return nil, err
}
buf = make([]byte, 4)
bytes, err := conn.Read(buf)
if err != nil {
return nil, err
}
if bytes != 4 {
return nil, ErrTorInvalidAddressResponse
}
r := binary.BigEndian.Uint32(buf)
addr := make([]net.IP, 1)
addr[0] = net.IPv4(byte(r>>24), byte(r>>16), byte(r>>8), byte(r))
return addr, nil
}
其过程与建立代理连接的方程类似,即先协商版本与认证方式,再发送请求与等待响应。不同的地方在于:
- 选择不认证的方式,如代码(1)处所示;
- 请求的命令是'FO',它是Tor代理扩展的命令,指明用于Name Lookup,同时目标地址类型指定为DOMAINNAME,如代码(2)处所示;
- Tor退出节点进行DNS查询后,由Tor代码返回。这里仅接受IPv4地址,如代码(3)处所示;
到此,我们就完整分析了Bitcoin P2P网络中Peer节点之间建立、维持和断开TCP连接的所有过程,包括了通过SOCKS代理或Tor代理进行连接或DNS查询的实现。然而,我们也了解到,除了节点内置的种子节点的地址,节点接入网络时并不知道其他节点的地址,那么节点是如何知道网络中其他节点的地址,以及如何选择Peer节点地址建立连接呢?我们将在《Btcd区块在P2P网络上的传播之AddrManager》中分析。由于本文涉及到了Tor网络,有些读者可能希望进一步了解Tor,同时,Bitcoin网络与Tor网络均做到了对源或者账户匿名,所以我们在分析AddrManager之前,下一篇文章将讨论Bitcoin网络与Tor网络匿名性。