[spark streaming] ReceiverTracke
前言
在Spark Streaming里,总体负责任务的动态调度是JobScheduler
,而JobScheduler
有两个很重要的成员:JobGenerator
和 ReceiverTracker
。JobGenerator
负责将每个 batch 生成具体的 RDD DAG ,而ReceiverTracker
负责数据的来源。
需要在executor上运行的receiver
接收数据的InputDStream
都需要继承ReceiverInputDStream
,ReceiverInputDStream有一个def getReceiver(): Receiver[T]
方法,子类都需要实现这个方法。如KafkaInputDStream
对应KafkaReceiver
,FlumeInputDStream
对应FlumeReceiver
,TwitterInputDStream
对应TwitterReceiver
等。
流程概述:
-
ReceiverTracker
启动,获取所有InputDStreams
对应的receivers - 根据调度策略确定每个Receiver的优先位置(能在哪些executor上执行)
- 将Receiver包装成RDD并通过sc提交一个job,执行函数为创建supervisor实例,调用start()方法,也即调用了Receiver的onStart()方法
- Receiver的onStart不断接收数据,通过store方法最终调用supervisor来存储块
- 存储后通知
ReceiverTracker
此Block的信息 -
ReceiverTracker
将Block消息交给ReceivedBlockTracker
管理
启动 Receiver
先看看receiverTracker的启动过程:
ssc.start()
scheduler.start()
receiverTracker.start()
jobGenerator.start()
----
def start(): Unit = synchronized {
if (isTrackerStarted) {
throw new SparkException("ReceiverTracker already started")
}
if (!receiverInputStreams.isEmpty) {
endpoint = ssc.env.rpcEnv.setupEndpoint(
"ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
if (!skipReceiverLaunch) launchReceivers()
logInfo("ReceiverTracker started")
trackerState = Started
}
}
在start方法中先创建了ReceiverTracker的Endpoint,接着调用launchReceivers()方法来启动Recivers:
private def launchReceivers(): Unit = {
val receivers = receiverInputStreams.map { nis =>
val rcvr = nis.getReceiver()
rcvr.setReceiverId(nis.id)
rcvr
}
runDummySparkJob()
logInfo("Starting " + receivers.length + " receivers")
endpoint.send(StartAllReceivers(receivers))
}
遍历所有的InputStream,并得到所对应的Receiver集合receivers。并向ReceiverTrackerEndpoint发送了StartAllReceivers消息,看看接收到该消息后是如何处理的:
case StartAllReceivers(receivers) =>
val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
for (receiver <- receivers) {
val executors = scheduledLocations(receiver.streamId)
updateReceiverScheduledExecutors(receiver.streamId, executors)
receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
startReceiver(receiver, executors)
}
通过调度策略来计算决定每个receiver的一组优先位置,即一个Receiver改在哪个executor节点上启动,调度的主要原则是:
- 满足Receiver的preferredLocation。
- 其次保证将Receiver分布的尽量均匀。
接着遍历所有receivers调用了startReceiver(receiver, executors)方法来启动receiver:
private def startReceiver(
receiver: Receiver[_],
scheduledLocations: Seq[TaskLocation]): Unit = {
def shouldStartReceiver: Boolean = {
// It's okay to start when trackerState is Initialized or Started
!(isTrackerStopping || isTrackerStopped)
}
val receiverId = receiver.streamId
if (!shouldStartReceiver) {
onReceiverJobFinish(receiverId)
return
}
val checkpointDirOption = Option(ssc.checkpointDir)
val serializableHadoopConf =
new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration)
// Function to start the receiver on the worker node
val startReceiverFunc: Iterator[Receiver[_]] => Unit =
(iterator: Iterator[Receiver[_]]) => {
if (!iterator.hasNext) {
throw new SparkException(
"Could not start receiver as object not found.")
}
if (TaskContext.get().attemptNumber() == 0) {
val receiver = iterator.next()
assert(iterator.hasNext == false)
val supervisor = new ReceiverSupervisorImpl(
receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
supervisor.start()
supervisor.awaitTermination()
} else {
// It's restarted by TaskScheduler, but we want to reschedule it again. So exit it.
}
}
// Create the RDD using the scheduledLocations to run the receiver in a Spark job
val receiverRDD: RDD[Receiver[_]] =
if (scheduledLocations.isEmpty) {
ssc.sc.makeRDD(Seq(receiver), 1)
} else {
val preferredLocations = scheduledLocations.map(_.toString).distinct
ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
}
receiverRDD.setName(s"Receiver $receiverId")
ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))
val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](
receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ())
// We will keep restarting the receiver job until ReceiverTracker is stopped
future.onComplete {
case Success(_) =>
if (!shouldStartReceiver) {
onReceiverJobFinish(receiverId)
} else {
logInfo(s"Restarting Receiver $receiverId")
self.send(RestartReceiver(receiver))
}
case Failure(e) =>
if (!shouldStartReceiver) {
onReceiverJobFinish(receiverId)
} else {
logError("Receiver has been stopped. Try to restart it.", e)
logInfo(s"Restarting Receiver $receiverId")
self.send(RestartReceiver(receiver))
}
}(ThreadUtils.sameThread)
logInfo(s"Receiver ${receiver.streamId} started")
}
注意这里巧妙的将receiver包装成了RDD,并把scheduledLocations作为RDD的优先位置locationPrefs。
然后通过sc提交了一个Spark Core Job,执行函数是startReceiverFunc(也就是要在executor上执行的),在该方法中创建一个ReceiverSupervisorImpl对象,并调用了start()方法,在该方法中会调用 receiver的onStart 后立即返回。
receiver的onStart 方法一般会新建线程或线程池来接收数据,比如在 KafkaReceiver 中,就新建了线程池,在线程池中接收 topics 的数据。
supervisor.start() 返回后,由 supervisor.awaitTermination() 阻塞住线程,以让这个 task 一直不退出,从而可以源源不断接收数据。
Receiver 数据处理
前面提到receiver的onStart()方法会新建线程或线程池来接收数据,那接收的数据怎么处理的呢?都会调用receiver的store(),而store方法又调用了supervisor的方法。对应的store方法有多种形式:
- pushSingle: 对应单条小数据,需要通过BlockGenerator聚集多条数据后再成块的存储
- pushArrayBuffer: 对应数组形式的数据
- pushIterator: 对应 iterator 形式数据
- pushBytes: 对应 ByteBuffer 形式的块数据
除了pushSingle需要通过BlockGenerator将数据聚集成一个块的时候再存储,其他方法都是直接成块存储。
看看pushSingle是怎么通过聚集的方式存储块的:
def pushSingle(data: Any) {
defaultBlockGenerator.addData(data)
}
------
def addData(data: Any): Unit = {
if (state == Active) {
waitToPush()
synchronized {
if (state == Active) {
currentBuffer += data
} else {
throw new SparkException(
"Cannot add data as BlockGenerator has not been started or has been stopped")
}
}
} else {
throw new SparkException(
"Cannot add data as BlockGenerator has not been started or has been stopped")
}
}
这里的先调用waitToPush()
,会有rateLimiter检查速率,防止加入过快,如果过快会block住等到下一秒再添加,一秒能添加的条数受spark.streaming.receiver.maxRate
控制,即一个Receiver每秒能添加的条数。
检查完后会将数据添加到一个变长数组currentBuffer中。
另外,BlockGenerator被初始化的时候就创建了一个定时器:
private val blockIntervalMs = conf.getTimeAsMs("spark.streaming.blockInterval", "200ms")
require(blockIntervalMs > 0, s"'spark.streaming.blockInterval' should be a positive value")
private val blockIntervalTimer =
new RecurringTimer(clock, blockIntervalMs, updateCurrentBuffer, "BlockGenerator")
定时间隔默认200ms,可通过spark.streaming.blockInterval
配置,每次定时执行的是updateCurrentBuffer方法:
private def updateCurrentBuffer(time: Long): Unit = {
try {
var newBlock: Block = null
synchronized {
if (currentBuffer.nonEmpty) {
val newBlockBuffer = currentBuffer
currentBuffer = new ArrayBuffer[Any]
val blockId = StreamBlockId(receiverId, time - blockIntervalMs)
listener.onGenerateBlock(blockId)
newBlock = new Block(blockId, newBlockBuffer)
}
}
if (newBlock != null) {
blocksForPushing.put(newBlock) // put is blocking when queue is full
}
} catch {
case ie: InterruptedException =>
logInfo("Block updating timer thread was interrupted")
case e: Exception =>
reportError("Error in block updating thread", e)
}
}
- 将 currentBuffer 赋值给 newBlockBuffer
- 重新为currentBuffer分配一个新对象,以供存储新的数据
- 将currentBuffer封装为Block后添加到blocksForPushing中,blocksForPushing是一个默认长度为10的Queue,可通过
spark.streaming.blockQueueSize
配置
BlockGenerator初始化的时候还启动了一个线程来从blocksForPushing队列中取出Block通过supervisor来存储块的:
private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
supervisor 存储数据块
先存储再向上报告:
#pushAndReportBlock
val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
val numRecords = blockStoreResult.numRecords
val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult) trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo))
存储数据块有对应的receivedBlockHandler,在启用了WAL(spark.streaming.receiver.writeAheadLog.enable
为true)的情况下对应的是WriteAheadLogBasedBlockHandler(启用了WAL的情况下在应用程序挂掉后可以从WAL恢复数据),未启用的情况下对应的是BlockManagerBasedBlockHandler。
private val receivedBlockHandler: ReceivedBlockHandler = {
if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
if (checkpointDirOption.isEmpty) {
throw new SparkException(
"Cannot enable receiver write-ahead log without checkpoint directory set. " +
"Please use streamingContext.checkpoint() to set the checkpoint directory. " +
"See documentation for more details.")
}
new WriteAheadLogBasedBlockHandler(env.blockManager, env.serializerManager, receiver.streamId,
receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
} else {
new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
}
storeBlock方法部分代码:
case ArrayBufferBlock(arrayBuffer) =>
numRecords = Some(arrayBuffer.size.toLong)
blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel,tellMaster = true)
case IteratorBlock(iterator) =>
val countIterator = new CountingIterator(iterator)
val putResult = blockManager.putIterator(blockId, countIterator, storageLevel,tellMaster = true)
numRecords = countIterator.count
putResult
case ByteBufferBlock(byteBuffer) =>
blockManager.putBytes(blockId, new ChunkedByteBuffer(byteBuffer.duplicate()), storageLevel, tellMaster = true)
两种handler都是通过blockManager来存储block到内存或者磁盘,存储的细节可见BlockManager 解析。
通知 ReceiverTracker
存储了block后,接着创建了ReceivedBlockInfo实例,对应该block的一些信息,包括streamId(一个InputDStream对应一个Receiver,一个Receiver对应一个streamId)、block中数据的条数、storeResult等信息。
接着将receivedBlockInfo作为参数和ReceiverTracker通信发送AddBlock消息,ReceiverTracker收到消息后的处理如下:
case AddBlock(receivedBlockInfo) =>
if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
walBatchingThreadPool.execute(new Runnable {
override def run(): Unit = Utils.tryLogNonFatalError {
if (active) {
context.reply(addBlock(receivedBlockInfo))
} else {
throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
}
}
})
} else {
context.reply(addBlock(receivedBlockInfo))
}
都会调用addBlock(receivedBlockInfo)方法:
private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
receivedBlockTracker.addBlock(receivedBlockInfo)
}
ReceiverTracker有个专门管理block的成员receivedBlockTracker,通过addBlock(receivedBlockInfo)来添加block信息:
def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
try {
val writeResult = writeToLog(BlockAdditionEvent(receivedBlockInfo))
if (writeResult) {
synchronized {
getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo
}
logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
s"block ${receivedBlockInfo.blockStoreResult.blockId}")
} else {
logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +
s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.")
}
writeResult
} catch {
case NonFatal(e) =>
logError(s"Error adding block $receivedBlockInfo", e)
false
}
}
若启用WAL则会先将block信息以WAL保存,之后都会将block信息保存到streamIdToUnallocatedBlockQueuesmutable.HashMap[Int, ReceivedBlockQueue]
中,其中key为InputDStream唯一id,value为已存储但未分配的block信息。之后为 batch 分配blocks,会访问该结构来获取每个 InputDStream 对应的未消费的 blocks。