机器学习——朴素贝叶斯方程

2022-05-16  本文已影响0人  sarashang

What is Naive Bayes model?

Protocol

Practical operation

What is Naive Bayes model?

给定历史训练数据集,由经验计算得到某类别的先验概率P(类别),又可以计算在某特征下属于该类别的后验概率P(类别|特征)。
优点:1. 算法逻辑简单,易于实现;2. 分类过程时空开销小
缺点:1. 由于假设模型属性之间相互独立,但在实际生活中并不成立,特别是属性/特征之间相关性较大时,分类效果不好。

原理 Principle

朴素贝叶斯算法的前提条件是假设各个特征之间相互独立。

训练数据集
T = {(x_1,y_1),( x_2,y_2),...,(x_n,y_n)}
先验概率分布
P(Y = c_k),k = 1,2,...,k
条件概率分布
P(X = x|Y = c_k) = P(X^{(1)}) = P(x^{(1)},...,X^{(n)} = x^{(n)}),k = 1,2,...,K
联合概率分布
P(X,Y) = P(X =x |Y =c_k)P(Y = c_k)

公式 Formula

P(类别|特征) = {P(特征|类别)P(类别) \over P(特征)}

Protocol

Naive Bayes Model-Protocol.png [1]

Practical operation [4]

# Example of Naive Bayes implemented from Scratch in Python
import csv
import random
import math

def loadCsv(filename):
    lines = csv.reader(open(filename, "rb"))
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset

def splitDataset(dataset, splitRatio):
    trainSize = int(len(dataset) * splitRatio)
    trainSet = []
    copy = list(dataset)
    while len(trainSet) < trainSize:
        index = random.randrange(len(copy))
        trainSet.append(copy.pop(index))
    return [trainSet, copy]

def separateByClass(dataset):
    separated = {}
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
    return separated

def mean(numbers):
    return sum(numbers)/float(len(numbers))

def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)

def summarize(dataset):
    summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
    del summaries[-1]
    return summaries

def summarizeByClass(dataset):
    separated = separateByClass(dataset)
    summaries = {}
    for classValue, instances in separated.iteritems():
        summaries[classValue] = summarize(instances)
    return summaries

def calculateProbability(x, mean, stdev):
    exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
    return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
    probabilities = {}
    for classValue, classSummaries in summaries.iteritems():
        probabilities[classValue] = 1
        for i in range(len(classSummaries)):
            mean, stdev = classSummaries[i]
            x = inputVector[i]
            probabilities[classValue] *= calculateProbability(x, mean, stdev)
    return probabilities
            
def predict(summaries, inputVector):
    probabilities = calculateClassProbabilities(summaries, inputVector)
    bestLabel, bestProb = None, -1
    for classValue, probability in probabilities.iteritems():
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classValue
    return bestLabel

def getPredictions(summaries, testSet):
    predictions = []
    for i in range(len(testSet)):
        result = predict(summaries, testSet[i])
        predictions.append(result)
    return predictions

def getAccuracy(testSet, predictions):
    correct = 0
    for i in range(len(testSet)):
        if testSet[i][-1] == predictions[i]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0

def main():
    filename = 'pima-indians-diabetes.data.csv'
    splitRatio = 0.67
    dataset = loadCsv(filename)
    trainingSet, testSet = splitDataset(dataset, splitRatio)
    print('Split {0} rows into train={1} and test={2} rows').format(len(dataset), len(trainingSet), len(testSet))
    # prepare model
    summaries = summarizeByClass(trainingSet)
    # test model
    predictions = getPredictions(summaries, testSet)
    accuracy = getAccuracy(testSet,  predictions)
    print('Accuracy: {0}%').format(accuracy)

main()

参考资料:

  1. 带你理解朴素贝叶斯分类算法 - 知乎 (zhihu.com)
  2. 独家 | 一文读懂贝叶斯分类算法(附学习资源) - 知乎 (zhihu.com)
  3. 算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) - T2噬菌体 - 博客园 (cnblogs.com)
  4. 一文学会朴素贝叶斯并且从头开始用 Python 实现朴素贝叶斯算法 - 简书 (jianshu.com)
  5. Naive Bayes Classifier From Scratch in Python (machinelearningmastery.com)
上一篇 下一篇

猜你喜欢

热点阅读