Graph Neural Networks for Social

2019-03-13  本文已影响0人  ZSCDumin

Graph Neural Networks for Social Recommendation

1. 摘要

2. 介绍

3. 本文模型

model

3.1 用户模型

3.1.1 Item Aggregation

The purpose of item aggregation is to learn item-space user latent factor h_{i}^{I} by considering items a user u_{i} has interacted with and users’ opinions on these items.

h^{I}_{i} = σ(W · Aggre_{items} ({x_{ia} ,∀a ∈ C(i)}) + b)

The output of MLP is the opinion-aware representation of the interaction between u_{i} and v_{a},x_{ia}, as follows:

x_{ia} = g_{v}([q_{a}⊕e_{r}])

3.1.2 Social Aggregation

与 Item Aggregation 做法类似

3.2 项目模型

3.2.1 User Aggregation

与 Item Aggregation 做法类似

3.3 预测评分

With the latent factors of users and items (i.e., h_{i} and z_{j} ), we can first concatenate them [h_{i} ⊕ z_{j}] and then feed it into MLP for rating prediction as:

g_{1} = [h_{i} ⊕ z_{j}]

g_{2} = σ(W_{2} · g_{1} + b_{2})

g_{l-1} = σ(W_{l} · g_{l-1} + b_{l})

r^{′}_{ij} = w^{T} · g_{l−1}

3.4 模型训练

Loss function as follows:

Loss = \frac{1}{2|O|} \sum_{i,j∈O} (r^{′}_{ij} − r_{ij})^{2}

4. 实验

4.1 数据集

4.2 Baselines

4.3 Result

4.3.1 Performance Comparison of Recommender Systems

1

4.3.2 Model Analysis

2
3
4

5. 未来工作

上一篇 下一篇

猜你喜欢

热点阅读