考研高数常用基础公式自用版

2019-06-20  本文已影响0人  木秋阳

三角函数

\csc x =\frac{1}{\sin x}     \sec x = \frac{1}{\cos x}     1+\tan^2 x  = \sec x    1+\cot^2x = \csc^2x

\sin 2x =2\sin x \cos x     \cos 2x = \cos^2 x - \sin^2x=2\cos^2x -1 = 1-2\sin^2x

\tan 2x =\frac{2\tan x}{1-\tan^2x}         \cot 2x = \frac{1-\cot^2x}{2\cot x}

\sin(\alpha + \beta ) = \sin\alpha \cos\beta +\sin\beta \cos\alpha

\sin^2 \alpha = \frac{1-\cos2\alpha}{2}        \cos^2\alpha = \frac{1+\cos2\alpha}{2}

\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

\sin\alpha - \sin\beta =2\sin\frac{\alpha -\beta}{2}\cos\frac{\alpha + \beta}{2}

cos\alpha + cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha-\beta}{2}

\cos\alpha - \cos\beta = -2\sin\frac{\alpha - \beta}{2}\sin\frac{\alpha + \beta}{2}

\sin\alpha \cos\beta = \frac{1}{2}[\sin(\alpha +\beta) + \sin(\alpha - \beta)]

\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha + \beta) +\cos(\alpha - \beta)]

\cos\alpha \sin\beta = \frac{1}{2}[\sin(\alpha +\beta) - \sin(\alpha +\beta)]

\sin\alpha \cos\beta = \frac{1}{2}[\cos(\alpha +\beta) + \cos(\alpha -\beta)]

常用的无穷小替换

x\rightarrow 0

\sin x     \arcsin x    \tan x     \arctan x \ln(1+x)    e^x -1 等价于 x

1- \cos x \leftrightarrow \frac{1}{2}x^2

(1+x)^\frac{1}{n} -1 ~~\frac{1}{n}x

几个常用的极限

\lim_{x\to∞} \sqrt[n]{\alpha}  = 1          特别的\lim_{n\to+∞}\sqrt[n]{n}  = 1

上一篇 下一篇

猜你喜欢

热点阅读