机器学习入门笔记

[Github项目推荐] 机器学习& Python 知识

2019-08-14  本文已影响1人  材才才

今天推荐三份知识点的速查表,分别是机器学习、深度学习和 Python 三方面的知识点速查表。其中前两份都是来自斯坦福大学的课程,分别是 CS229 机器学习 和 CS230 深度学习课程。


1. CS229 机器学习速查表

传送门

Github 地址:

https://github.com/afshinea/stanford-cs-229-machine-learning

网站:

https://stanford.edu/~shervine/teaching/cs-229/

简介

这是一个总结 CS229 机器学习课程的重要笔记的 Github 项目,目前有 6000+ Star,如下所示,,目前已经有几个翻译版本,除了基本的英文版本,还有好几个版本,包括中文版本的翻译。

image

对应快速查询的网站如下:

image

目录如下所示,总共包括六大部分内容:

image

这里我们具体看看监督学习的内容,如下所示是中文版翻译的内容,这份速查表是图文并茂,对每个概念给出基本的定义,并会配上图表,加深印象!

image

2. CS230 深度学习速查表

传送门

Github 地址:

https://github.com/afshinea/stanford-cs-230-deep-learning

网站:

https://stanford.edu/~shervine/teaching/cs-230/

简介

这是总结 CS230 深度学习课程的笔记,和第一份机器学习的知识点速查表都是同样的两个作者,afshinea 和 shervinea,前者目前是就职于 Uber 数据中心,后者应该是在斯坦福大学任教。

这份深度学习知识点速查表目前还没有中文版的翻译。Github 介绍如下:

image

对应快速查询的网站如下:

image

目录如下:

image

同样也是一份图文并茂的知识点速查表。


3. Python 知识点速查表

传送门

Github:

https://github.com/gto76/python-cheatsheet

简介

总结了很多 python 知识点使用速查表,从基础的数据类型(数值、字符串、列表、字典、集合)、一些内置函数用法(推导式、lambda、map、filter、reduce),到比较高级的生成器、迭代器、序列化和JSON,第三方库,包括Numpy、PIL、Matplolib等知识点,非常的齐全,部分知识点如下所示:

image

最后,上述三份知识点速查表,我都整理打包,获取方式如下:

  1. 关注公众号“机器学习与计算机视觉
  2. 在微信公众号后台留言 CheatSheet

欢迎关注我的微信公众号--算法猿的成长,或者扫描下方的二维码,大家一起交流,学习和进步!

image

往期精彩推荐

机器学习系列
数学学习笔记
Github项目 & 资源教程推荐
上一篇下一篇

猜你喜欢

热点阅读