2.8 量子谐振子梯度算符 ladder operator

2020-05-31  本文已影响0人  莎野椰

https://www.youtube.com/watch?v=gRdCV9p8sAU&list=PL65jGfVh1ilueHVVsuCxNXoxrLI3OZAPI&index=20

前言

本节利用谐振子算符,构建薛定谔方程,再用梯度算符求解。

1. 谐振子波函数图像

2. 谐振子薛定谔方程TISE

\underbrace{({- \frac{\hbar^2}{2m} \frac{\partial^2 }{\partial x^2} + \frac1 2 m \omega^2 x^2})}_{\hat H} \Psi = E \Psi\\ =1/{(2m)}(\hat p^2 + (m\omega x)^2)\\ \because (z^2+b^2) = (ia+b)(-ia+b)\\ Suggest:\ \ \ \ \pm i\hat p + m\omega \hat x

2. 对易子和梯度算符

[\hat A,\ \hat B] = \hat A \hat B - \hat B \hat A

[\hat x,\ \hat p]\psi = (\hat x \hat p - \hat p \hat x )\psi

\hat x (\hat p \psi) - \hat p (\hat x \psi) = x (-i\hbar \frac{\partial \psi}{\partial x})-(-i\hbar \frac{\partial}{\partial x}(x \psi))
对右边括号内进一步求导:
\Rightarrow -i \hbar (x \frac{\partial}{\partial x} - \psi - x\frac{\partial}{\partial x}) = i \hbar \psi

\Rightarrow \underbrace{[\hat x,\ \hat p]=i \hbar}
带入\hat a_- \cdot \hat a_+ =\underbrace{\frac{1}{2 \hbar m \omega}(\hat p^2 + m^2 \omega^2 \hat x^2}_{\frac 1 {\hbar \omega} \hat H} - im\omega \underbrace{(\hat x \hat p - \hat p \hat x)}_{[\hat x,\ \hat p]}) \\ = \frac{1}{\hbar \omega} \hat H + 1/2 \\

or\ \ \hat a_+ \cdot \hat a_-= \frac{1}{\hbar \omega} \hat H - 1/2 \\

3.梯度算符和基态

至此我们还没求解过一个薛定谔方程,但是得到了如下关系:
\Psi solution \Rightarrow \hat a_+\psi\ \ solution \rightarrow E+\hbar \omega
\Psi solution \Rightarrow \hat a_-\psi\ \ solution \rightarrow E-\hbar \omega

上一篇下一篇

猜你喜欢

热点阅读