01.平均负载

2020-09-11  本文已影响0人  讲武德的年轻人

Linux性能查看工具


Linux性能检查工具总览

Linux性能学习思维导图


Linux性能学习思维导图
下面开始分别进行学习

---------------------------------------------------------------------------

1. 系统平均负载

uptime

最后三个数字,依次则是过去1分钟、5分钟、15分钟的平均负载(Load Average)

所谓可运行状态的进程,是指正在使用CPU或者正在等待CPU的进程,也就是我们常用ps -aux命令看到的,处于R状态(Running 或 Runnable)的进程。

不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的I/O响应,也就是我们在ps命令中看到的D状态(Uninterruptible Sleep,也称为Disk Sleep)的进程。

可以简单理解为,平均负载其实就是平均活跃进程数。平均活跃进程数,直观上的理解就是单位时间内的活跃进程数,但它实际上是活跃进程数的指数衰减平均值。这个“指数衰减平均”的详细含义你不用计较,这只是系统的一种更快速的计算方式,你把它直接当成活跃进程数的平均值也没问题。

既然平均的是活跃进程数,那么最理想的,就是每个CPU上都刚好运行着一个进程,这样每个CPU都得到了充分利用。比如当平均负载为2时,意味着什么呢?
在只有2个CPU的系统上,意味着所有的CPU都刚好被完全占用。
在4个CPU的系统上,意味着CPU有50%的空闲。
而在只有1个CPU的系统中,则意味着有一半的进程竞争不到CPU。

平均负载最理想的情况是小于并接近 CPU个数

[root@xhs ~]#  grep 'model name' /proc/cpuinfo | wc -l
1
[root@xhs ~]# uptime
 19:04:18 up 13 days, 23:04,  2 users,  load average: 0.00, 0.01, 0.05

当平均负载高于 CPU 数量70%的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。

但70%这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。

还是要回到平均负载的含义上来,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。

而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

  1. CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
  2. I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
  3. 大量等待 CPU 的进程调度也会导致平均负载升高,此时的CPU使用率也会比较高。
平均负载高分析案例

先安装两个包stress和sysstat(我的Ubuntu虚拟机配置2C8G)
stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。

而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。

mpstat 是一个常用的多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有CPU的平均指标。

pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。

root@xhs-virtual-machine:~# apt-get install stress sysstat 
场景一:CPU 密集型进程

首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:
$ stress --cpu 1 --timeout 600
接着,在第二个终端运行uptime查看平均负载的变化情况:

# -d 参数表示高亮显示变化的区域
$ watch -d uptime
...,  load average: 1.00, 0.75, 0.39

最后,在第三个终端运行mpstat查看 CPU 使用率的变化情况:

# -P ALL 表示监控所有CPU,后面数字5表示间隔5秒后输出一组数据
$ mpstat -P ALL 5
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:30:06 CPU   %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:30:11 all  50.05    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00   49.95
13:30:11   0   0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00  100.00
13:30:11   1 100.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00

从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。

那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?你可以使用 pidstat 来查询:

# 间隔5秒后输出一组数据
$ pidstat -u 5 1
13:37:07      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:37:12        0      2962  100.00    0.00    0.00    0.00  100.00     1  stress

从这里可以明显看到,stress进程的CPU使用率为100%。

场景二:I/O 密集型进程

首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync:

$ stress -i 1 --timeout 600

还是在第二个终端运行uptime查看平均负载的变化情况:

$ watch -d uptime
...,  load average: 1.06, 0.58, 0.37

然后,第三个终端运行mpstat查看 CPU 使用率的变化情况:

# 显示所有CPU的指标,并在间隔5秒输出一组数据
$ mpstat -P ALL 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:41:28  CPU    %usr  %nice   %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:41:33  all    0.21   0.00   12.07  32.67    0.00    0.21    0.00    0.00    0.00   54.84
13:41:33    0    0.43   0.00   23.87  67.53    0.00    0.43    0.00    0.00    0.00    7.74
13:41:33    1    0.00   0.00    0.81   0.20    0.00    0.00    0.00    0.00    0.00   98.99

从这里可以看到,1 分钟的平均负载会慢慢增加到 1.06,其中一个 CPU 的系统CPU使用率升高到了 23.87,而 iowait 高达 67.53%。这说明,平均负载的升高是由于 iowait 的升高。

那么到底是哪个进程,导致 iowait 这么高呢?我们还是用 pidstat 来查询:

# 间隔5秒后输出一组数据,-u表示CPU指标
$ pidstat -u 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:42:08      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:42:13        0       104    0.00    3.39    0.00    0.00    3.39     1  kworker/1:1H
13:42:13        0       109    0.00    0.40    0.00    0.00    0.40     0  kworker/0:1H
13:42:13        0      2997    2.00   35.53    0.00    3.99   37.52     1  stress
13:42:13        0      3057    0.00    0.40    0.00    0.00    0.40     0  pidstat
可以发现,还是 stress 进程导致的。
场景三:大量进程的场景

当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。

比如,我们还是使用 stress,但这次模拟的是 8 个进程:

$ stress -c 8 --timeout 600

由于系统只有 2 个CPU,明显比 8 个进程要少得多,因而,系统的 CPU 处于严重过载状态,平均负载高达7.97:

$ uptime
...,  load average: 7.97, 5.93, 3.02

接着再运行pidstat来看一下进程的情况:

# 间隔5秒后输出一组数据
$ pidstat -u 5 1
14:23:25      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
14:23:30        0      3190   25.00    0.00    0.00   74.80   25.00     0  stress
14:23:30        0      3191   25.00    0.00    0.00   75.20   25.00     0  stress
14:23:30        0      3192   25.00    0.00    0.00   74.80   25.00     1  stress
14:23:30        0      3193   25.00    0.00    0.00   75.00   25.00     1  stress
14:23:30        0      3194   24.80    0.00    0.00   74.60   24.80     0  stress
14:23:30        0      3195   24.80    0.00    0.00   75.00   24.80     0  stress
14:23:30        0      3196   24.80    0.00    0.00   74.60   24.80     1  stress
14:23:30        0      3197   24.80    0.00    0.00   74.80   24.80     1  stress
14:23:30        0      3200    0.00    0.20    0.00    0.20    0.20     0  pidstat

可以看出,8 个进程在争抢 2 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。

小结

分析完这三个案例,我再来归纳一下平均负载的理解。

平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:

  1. 平均负载高有可能是 CPU 密集型进程导致的;
  2. 平均负载高并不一定代表 CPU 使用率高,还有可能是 I/O 更繁忙了;
  3. 当发现负载高的时候,你可以使用 mpstat、pidstat 等工具,辅助分析负载的来源。
上一篇 下一篇

猜你喜欢

热点阅读