特征选择

2020-01-10  本文已影响0人  Ary_zz

2020-01-10

皮尔逊相关系数

image.png

衡量线性相关性,检查数据集里目标和数值特征之间皮尔逊相关系数的绝对值。根据这个准则保留前n个特征。

def cor_selector(X, y,num_feats):
    cor_list = []    
    feature_name = X.columns.tolist()
    # calculate the correlation with y for each feature
    for i in X.columns.tolist():
        cor = np.corrcoef(X[i], y)[0, 1]
        cor_list.append(cor)
    # replace NaN with 0 
   cor_list = [0 if np.isnan(i) else i for i in cor_list]
    # feature name 
   cor_feature = X.iloc[:,np.argsort(np.abs(cor_list))
[-num_feats:]].columns.tolist() 
   # feature selection? 0 for not select, 1 for select
    cor_support = [True if i in cor_feature else False for i in 
feature_name]
    return cor_support, cor_feature
cor_support, cor_feature = cor_selector(X, y,num_feats)
print(str(len(cor_feature)), 'selected features')
from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
from sklearn.datasets import load_iris

iris=load_iris()
#选择K个最好的特征,返回选择特征后的数据

#第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
#参数k为选择的特征个数
# 定义函数
def multivariate_pearsonr(X, y):
    scores, pvalues = [], []
    for ret in map(lambda x:pearsonr(x, y), X.T):
        scores.append(abs(ret[0]))
        pvalues.append(ret[1])
    return (np.array(scores), np.array(pvalues))

transformer = SelectKBest(score_func=multivariate_pearsonr, k=2)
Xt_pearson = transformer.fit_transform(iris.data, iris.target)
print(Xt_pearson)

卡方分布

只能用于二分类
计算目标与数值变量之间的卡方度量分布,只选取卡方值最大的变量。


image.png

假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距,构建统计量:


image.png
from sklearn.feature_selection import SelectKBestfrom 
sklearn.feature_selection import chi2

#选择K个最好的特征,返回选择特征后的数据
SelectKBest(chi2, k=2).fit_transform(iris.data, iris.target)
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
X_norm = MinMaxScaler().fit_transform(X)
chi_selector = SelectKBest(chi2, k=num_feats)
chi_selector.fit(X_norm, y)
chi_support = chi_selector.get_support()
chi_feature = X.loc[:,chi_support].columns.tolist()
print(str(len(chi_feature)), 'selected features')

递归特征消除

通过特征的重要性,递归的去掉不重要的

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
rfe_selector = RFE(estimator=LogisticRegression(), 
n_features_to_select=num_feats, step=10, verbose=5)
rfe_selector.fit(X_norm, y)
rfe_support = rfe_selector.get_support()
rfe_feature = X.loc[:,rfe_support].columns.tolist()
print(str(len(rfe_feature)), 'selected features')
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

#递归特征消除法,返回特征选择后的数据
#参数estimator为基模型
#参数n_features_to_select为选择的特征个数
RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data,iris.target)

套索:SelectFromModel

Lasso和RF都有自己的特征选择方法。Lasso正则化器强制许多特征权重为零

from sklearn.feature_selection import Select
FromModelfrom sklearn.linear_model import LogisticRegression

embeded_lr_selector = SelectFromModel(LogisticRegression(penalty="l1"),
 max_features=num_feats)
embeded_lr_selector.fit(X_norm, y)

embeded_lr_support = embeded_lr_selector.get_support()
embeded_lr_feature = X.loc[:,embeded_lr_support].columns.tolist()
print(str(len(embeded_lr_feature)), 'selected features')

基于树形结构:SelectFromModel

使用随机森林,根据特征的重要性来选择特征, 使用每个决策树中的节点杂质来计算特征的重要性。随机森林中,最终的特征重要性是所有决策树特征重要性的平均值。

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier

embeded_rf_selector = 
SelectFromModel(RandomForestClassifier(n_estimators=100), 
max_features=num_feats)
embeded_rf_selector.fit(X, y)e

mbeded_rf_support = embeded_rf_selector.get_support()
embeded_rf_feature = X.loc[:,embeded_rf_support].columns.tolist()
print(str(len(embeded_rf_feature)), 'selected features')

结合GBDT模型

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingClassifier

#GBDT作为基模型的特征选择
SelectFromModel(GradientBoostingClassifier()).fit_transform(iris.data, iris.target)

可以使用 LightGBM或者XGBoost 对象,只要它有feature_importances_属性

from sklearn.feature_selection import SelectFromModel
from lightgbm import LGBMClassifier

gbc=LGBMClassifier(n_estimators=500, learning_rate=0.05, 
num_leaves=32, colsample_bytree=0.2,
            reg_alpha=3, reg_lambda=1, min_split_gain=0.01, 
min_child_weight=40)

embeded_lgb_selector = SelectFromModel(lgbc, max_features=num_feats)
embeded_lgb_selector.fit(X, y)

embeded_lgb_support = embeded_lgb_selector.get_support()
embeded_lgb_feature = X.loc[:,embeded_lgb_support].columns.tolist()
print(str(len(embeded_lgb_feature)), 'selected features'

总结

全部使用

# put all selection together
feature_selection_df = pd.DataFrame({'Feature':feature_name, 
'Pearson':cor_support, 'Chi-2':chi_support, 'RFE':rfe_support, 
'Logistics':embeded_lr_support, 
                                   'Random Forest':embeded_rf_support,
 'LightGBM':embeded_lgb_support})
# count the selected times for each feature
feature_selection_df['Total'] = np.sum(feature_selection_df, axis=1)
# display the top 100
feature_selection_df = 
feature_selection_df.sort_values(['Total','Feature'] , ascending=False)
feature_selection_df.index = range(1, len(feature_selection_df)+1)
feature_selection_df.head(num_feats)

functionComputeSMA(data,window_size)
上一篇下一篇

猜你喜欢

热点阅读