浅谈HDFS(一)

2019-09-26  本文已影响0人  gengqing

产生背景及定义

HDFS:分布式文件系统,用于存储文件,主要特点在于其分布式,即有很多服务器联合起来实现其功能,集群中的服务器各有各的角色

优缺点

  1. 高容错性
    • 数据自动保存多个副本,通过增加副本的方式,提高容错性
    • 若某一个副本丢失后,它可以自动分配到其它节点作为新的副本
  2. 处理大数据
    • 数据规模:能够处理的数据规模可以达到GB,TB,甚至PB级别的数据
    • 文件规模:能够处理百万规模以上的文件数量,数量相当之大
  3. 可构建在廉价的机器上,通过多副本机制,提高可靠性

组成架构

  1. namenode(nn):就是Master,是一个管理者,存放元数据
    • 管理HDFS的名称空间
    • 配置副本策略
    • 管理数据块的映射信息
    • 处理客户端的读写请求
  2. datanode(dn):就是slave,真正存储文件的地方
    • 存储实际的数据块
    • 执行数据块的读写操作
  3. secondarynamenode(2nn):并非namenode的热备,当namenode挂掉的时候,并不能马上替换namenode并提供服务
    • 作为namenode的辅助,分担其工作量,比如定期合并Fsimage和Edits(文章后边会讲到这两个东西),并推送给namenode
    • 在紧急情况下,可辅助恢复namenode,但是只能恢复部分,而不能全部恢复
  4. client:客户端
    • 文件的切分,在上传HDFS之前,client将文件切分为一个一个的Block,然后一个一个进行上传
    • 与namenode交互,获取文件的datanode信息
    • 与datanode交互,读取或写入数据
    • client提供一些命令来管理HDFS,比如namenode的格式化
    • client通过一些命令来访问HDFS,比如对HDFS的增删查改等

文件块大小

为什么要把文件抽象为Block块存储?

  1. block的拆分使得单个文件大小可以大于整个磁盘的容量,构成文件的Block可以分布在整个集群, 理论上,单个文件可以占据集群中所有机器的磁盘。
  2. Block的抽象也简化了存储系统,对于Block,无需关注其权限,所有者等内容(这些内容都在文件级别上进行控制)。
  3. Block作为容错和高可用机制中的副本单元,即以Block为单位进行复制。

HDFS中的文件在物理内存中分块存储(Block),块的大小在Hadoop2.x版本中默认为128M,在老版本中为64M,那么为什么为128M呢?

其实,HDFS的块的大小的设置主要取决于磁盘传输速率,如下:

  1. 如果在HDFS中,寻址时间为10ms,即查找到目标Block的时间为10ms
  2. 专家说操作的最佳状态为:寻址时间为传输时间的1%,因此传输时间为1s
  3. 而目前磁盘的传输速率普遍为100M/s

为什么块大小不能设置太小,也不能设置太大?

  1. HDFS的块设置太小,会增加寻址时间,使得程序可能一直在寻找块的开始位置
  2. 如果设置的太大,从磁盘传输数据的时间会明显大于定位这个块所需的寻址时间,导致程序处理这块数据时会非常慢

HDFS的数据流

HDFS写数据流程

  1. 客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
  2. NameNode返回是否可以上传。
  3. 客户端请求第一个 Block上传到哪几个DataNode服务器上。
  4. NameNode返回3个DataNode节点,分别为dn1、dn2、dn3, 如果有多个节点,返回实际的副本数量,并根据距离及负载情况计算
  5. 客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
  6. dn1、dn2、dn3逐级应答客户端。
  7. 客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
  8. 当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

网络拓扑---节点距离计算

在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据,那么这个最近距离是怎么计算的呢?

结论:两个节点到达最近的共同祖先的距离总和,即为节点距离。

如上图所示:

机架感知(副本存储的节点选择)

副本的数量我们可以从配置文件中设置,那么HDFS是怎么选择副本存储的节点的呢?

如上图所示,为了提高容错性,有如下设置,加入现在有3个副本:

这样做的目的就是为了提高容错性。

HDFS读数据流程

HDFS读数据流程
  1. 客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
  2. 挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
  3. DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
  4. 客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。
上一篇下一篇

猜你喜欢

热点阅读