大数据,机器学习,人工智能机器学习与数据挖掘机器学习

机器学习笔记 第3课:参数算法和非参数算法

2018-10-02  本文已影响8人  首席IT民工

什么是参数机器学习算法?它与非参数机器学习算法有何不同?

“假设”通常会大大简化学习过程,但也会限制学到的东西。将函数简化为已知形式的算法,称为参数机器学习算法。

它包括两个步骤:

选择函数的形式。

从训练数据中学习该函数的系数。

常见的参数机器学习算法是线性回归逻辑回归

相反地,不对映射函数的形式做出有力假设的算法,称为非参数机器学习算法。通过不作出任何假设,它可以自由地从训练数据中学习任何形式的函数。

非参数方法通常更灵活,实现了更高的准确性,但需要更多的数据和训练时间。

常见的非参数算法包括支持向量机神经网络决策树

下一课中我们谈谈方差、偏差和两者间的权衡。

上一篇下一篇

猜你喜欢

热点阅读