HYphy
Hyphy的官网:
https://www.hyphy.org/about/
Hyphy(Hypothesis Testing using Phylogenies)是一个通过系统发育学、分子演化和机器学习技术分析遗传序列(尤其是推断是否存在自然选择)的开源软件包。
HYphy的用途:
HYphy is most commonly used for characterzing the evolutionary process, inparticular:
1 detecting signitures of selection
2 estimating evolution rates
3 comparing different evolutionary models
4 fitting customa models to sequence alignments
Hyphy 提供了一系列用于检验蛋白编码序列或氨基酸序列是否经历自然选择的假设的系统发育学方法,输入数据包括蛋白编码序列或氨基酸序列的多重比对序列和系统发育树。
因为Hyphy和paml里的codeml具有相似的功能,下面用codeml的模型分类(点模型,分支模型和分支-位点模型)方法对Hyphy里的方法归类:
点模型 site model
下面介绍的三个模型适合于回答:特定的位点在系统发育树整体上是受正选择还是负选择。
Are individua sites subject to pervasive (across the whole phylogeny) positive or purifying selection?
FEL
FEL (fixed effects likelihood),适用于小-到中型数据集
SLAC
SLAC(single-likelihhod ancestor counting),和FEL相似,适用于更大一些的数据集,但不适合分化较大的数据
FUBAR
FUBAR(fast, unconstrained Bayesian approximation),适合中型-大型数据集,比FEL更适合于检验位点在整个系统发育树上存在的选择。
分支-位点模型 branch-site model
下面介绍的模型适合于回答:特定的位点在系统发育树的特定分支上是受正选择还是负选择。
Are individual sites subject to episodic (at a subset of branches) positive or purifying selection?
MEME
MEME(mixed effects model of evolution)是推荐检验在特定位点是否存在正选择的方法。需要注意的是MEME不接受预先设定前景枝
下面介绍的模型适合于回答:系统发育树的特定分支是否在一些位点上受正选择或负选择。
Are individual branches subject to episodic ( at a subset of sites) positive orpurifying selection?
aBSREL
aBSREL(adaptive brach-site random effects likelihood) 是推荐检验在特定的分支上是否存在正选择的方法。它允许预先设定前景枝,也允许不预先设定,而是用探索型的模式检测每个分支是否受到选择
aBSREL是经过改良后的分支-位点模型,能够推断每个分支最优ω类型个数
After aBSREL fits the full adaptive model, the likelihood test is performed at each branch and compares the full model to a null model where branches are not allowed to have rate classes of ω>1.
aBSREL可以在两种模式下运行:
1 预先设定感兴趣的分支为前景枝,检验该分支是否经历了正选择
2 探索模式,不预先设定前景枝,对所有分支进行是否经历正选择的检验。但是有一个缺点就是:为了进行多重检验,所有分支的p-value都会被矫正,导致该方法的检验能力变弱
下面介绍的模型适合于回答:对于某个基因,它在系统发育树的特定分支是否受正选择。
Has a gene experienced positive selection at any site on a particular branch or set of branches?
BUSTED
BUSTED (branch-site unrestricted statistical test for episodic diversification)检验某个基因在特定预设分支上是否经历了选择。尤其适用于小数据集(小于10个分类单元)
下面介绍的模型适合于回答:对于某个基因,它在系统发育树的特定分支受到的选择是放松了还是加强了。
Has gene-wide selection pressure been relaxed or intensified along with a certain subset of branches?
分支模型
Relax
Relax适用于检验在被预设的前景枝上,基因受到的净化选择(purifying selection,也就是负选择)压力是放松了还是加强了。这个方法不适合于检验正选择。
以上所有方法都可以通过下载图形用户界面Hyphy-GUI实现
具体的操作方法详见官网教程http://hyphy.org/tutorials/gui-tutorial/