Flink 实时计算在微博的应用

2021-05-25  本文已影响0人  Flink中文社区

微博机器学习研发中心数据计算负责人,高级系统工程师曹富强为大家带来 Flink 实时计算在微博的应用介绍。内容包括:

1、微博介绍
2、数据计算平台介绍
3、Flink 在数据计算平台的典型应用

一、微博介绍

本次给大家带来的分享是 Flink 实时计算在微博的应用。微博是中国领先的社交媒体平台,目前的日活跃用户是 2.41 亿,月活跃用户是 5.5 亿,其中移动用户占比超过了 94%。

image.png

二、数据计算平台介绍

1. 数据计算平台概况

下图为数据计算平台的架构图。

image.png

2. 数据计算

下面两张图是数据计算,其中一个是实时计算,另外一个是离线计算。

image.png

3. 实时特征

如下图所示,我们基于 Flink 和 Storm 构建了一个实时特征生成的服务。整体上来说,它会分为作业详情、输入源特征生成、输出和资源配置。用户按照我们事先定义好的接口去开发特征生成的 UDF 就可以。其他的像输入、特征写入,都是平台自动提供的,用户只需要在页面上配置就好。另外,平台会提供输入数据源的监控、作业的异常监控、特征写入监控、特征读取监控等,这些都是自动生成的。

image.png

4. 流批一体

下面介绍我们基于 FlinkSQL 构建的批流一体。首先,我们会统一元数据,将实时日志跟离线日志通过元数据管理平台去统一。统一之后,用户在提交作业的时候,我们会有一个统一的调度层。调度这一块,是根据作业的类型,作业的特点,目前集群的负载的情况,将作业调度到不同的集群上去。

目前调度层支持的计算引擎主要就是 HiveSQL,SparkSQL 跟 FlinkSQL。Hive 和 Spark 的 SQL 主要用于批量计算,FlinkSQL 是做批流混跑。整个结果会输出到数据仓库中,提供给业务方使用。批流一体这块大概有 4 个关键点:

image.png

5. 数据仓库

image.png

三、Flink 在数据计算平台的典型应用

1. 流式机器学习

首先介绍流式机器学习的几个特点,最大的特点就是实时化。这块分为特征的实时化和模型的实时化。

image.png

■ 微博流式机器学习的特点:

■ 流式机器学习有几个比较难的问题:

image.png

■ 流失机器学习流程:

另外,

image.png

■ 样本

这里简单介绍一下我们流式机器学习样本的发展历程。2018 年 10 月,我们上线了第一个流式样本作业,是通过 Storm 和外部存储 Redis 去做的。2019 年 5 月,我们使用新的实时计算框架 Flink,采用 union+timer 方案替代 window 计算来实现多个数据流的 join 操作。2019 年 10月,上线了一个xx样本作业,单个作业的 qps 达到了几十万。在今年 4 月份,把样本生成流程平台化。到今年 6 月份,平台化做了一个迭代,支持样本的落盘,包括样本库,还有样本的各种监控指标的完善。

image.png

流式机器学习所谓的样本生成,其实就是多个数据流按照相同的 key 做一个拼接。比如说,我们有三个数据流,数据清洗后的结果存储为 <k , v>, k 是聚合的 key,v 是样本中需要的值。数据 union 后做 KeyBy 聚合,聚合后将数据存储在内存区域 value state 中。如下图所示:

image.png

■ 样本平台

我们把整个样本拼接的过程做了一个平台化的操作,分成了 5 个模块,包括输入、数据清洗、样本拼接、样本的格式化和输出。基于平台化开发,用户只需要关心业务逻辑部分即可。需要用户开发的有:

其余的在UI上配置即可实现,具体有:

资源由平台方审核并配置。另外,整个平台提供基础的一些监控,包括输入数据的监控、样本指标的监控、作业异常监控、样本输出量的监控。

image.png

■ 流式机器学习项目的样本 UI

下图为流式机器学习项目的样本。左边是样本生成的作业配置,右边是样本库。样本库主要是做样本的管理展示,包括样本的说明权限,样本的共享情况等等。

image.png

■ 流失机器学习的应用

最后介绍一下流式机器学习应用的效果。目前我们支持实时样本拼接,QPS 达到百万级别。支持流式模型训练,可以同时支持几百个模型训练,模型实时性支持小时级/分钟级 模型更新。流式学习全流程容灾,支持全链路自动监控。近期在做的一个事情是流式的深度学习,增加实时模型的表达能力。还有强化学习这一块,探索一些新的应用场景。

image.png

2. 多模态内容理解

■ 简介

多模态就是使用机器学习的一些方法去实现或者理解多元模态信息的能力或者技术。微博的这块主要包括图片、视频、音频、文本。

举个例子,我们一开始做视频分类的时候只用到了视频抽帧后的那些帧,也就是图片。后来第二次优化的时候,加入了音频相关的东西,还有视频对应的博文相关的东西,相当于把音频、图片、文本,多模态的融合考虑,更精准的去生成这个视频的分类标签。

image.png

■ 平台

下图为多模态内容理解的平台架构。中间这部分是 Flink 实时计算,实时的接收图片流、视频流、发博流这些数据,然后通过模型插件调用下边的基础服务,深度学习模型服务。调用服务之后,会返回内容特征。然后我们把特征存储到特征工程,通过数据中台对外提供给各个业务方。整个作业运行过程中全链路监控报警,异常情况第一时间响应。平台自动提供日志收集,指标统计,CASE 追踪等功能。中间这一块使用 zk 做服务发现,解决实时计算和深度学习模型之间服务状态同步的问题。另外,除了状态同步,也会有一些负载均衡的策略。最下边就是使用数据-对账系统,进一步提高数据处理成功率。

image.png

■ UI

多模态内容理解的 UI,主要包括作业信息、输入源信息、模型信息、输出信息、资源配置。这块通过配置化的开发,去提高开发效率。然后会自动生成模型调用的一些监控指标,包括模型调用的成功率和耗时。当作业提交之后,会自动生成一个用于指标统计的作业。

image.png

3. 内容去重服务

■ 背景

在推荐场景下,如果给用户一直推重复的内容,是很影响用户体验的。基于这个考虑,结合 Flink 实时流计算平台、分布式向量检索系统和深度学习模型服务构建的一套内容去重服务平台,具有低延迟、高稳定性、高召回率的特点。目前支持多个业务方,稳定性达到 99.9+%。

image.png

■ 架构

下图为内容去重服务的架构图。最下边是多媒体的模型训练。这块做离线的训练。比如说我们会拿到一些样本数据,然后去做样本处理,样本处理完之后把样本存到样本库中去。当我需要做模型训练的时候,我从样本库中去拉取样本,然后做模型训练,训练好的结果会保存到模型库中去。

image.png

内容去重这里主要用到的模型是向量生成模型。包括图片的向量、文本的向量、视频的向量。

当我们把训练好的模型验证没有问题之后,会把这个模型保存到模型库中。模型库保存了模型的一些基础信息,包括模型的运行环境、版本。然后需要把模型部署上线,部署的过程需要从模型库中拉取模型,同时需要知道这个模型的运行的一些技术环境。

模型部署好之后,我们会通过 Flink 实时的从物料库中读取物料,然后调用多媒体预估服务去生成这些物料对应的向量。然后会把这些向量保存在 Weiss 库中,它是微博自研的一个向量召回检索系统。存到 Weiss 库中之后会对这条物料做向量召回的过程,召回跟这条物料相似的一批物料。在精排比对这块,会从所有的召回结果中加上一定的策略,选出最相似的那一条。然后把最相似的这一条跟当前物料聚合到一起,形成一个内容 ID。最后业务去用的时候,也是通过物料对应的内容 ID 做去重。

■ 应用

内容去重的应用场景,主要业务场景有三个:

image.png

■ 最后

我们通过将 Flink 实时流计算框架跟业务场景相结合,在平台化、服务化方面做了很大的工作,在开发效率、稳定性方面也做了很多优化。我们通过模块化设计和平台化开发,提高开发效率。目前实时数据计算平台自带全链路监控,数据指标统计和 debug case 追踪(日志回看)系统。另外,基于 FlinkSQL 在批流一体这块目前也有一定的应用。这些都是 Flink 给我们带来的一些新的变化,我们会持续不断的探索 Flink 在微博中更大的应用空间。

上一篇 下一篇

猜你喜欢

热点阅读