golang 指针

2018-10-03  本文已影响39人  one_zheng
在Go语言中,有几种东西可以代表“指针”。

 1. uintptr类型:该类型实际上是一个数值类型,也是Go语言内建的数据类型之一。根据当前计算机架构的不同,它可以存储32位或64位的无符号整数,可以代表任何指针的位(bit)模式,也就是原始的内存地址。
 2.unsafe.Pointer:可以代表任何指向可寻址的值的指针,同时它也是前面提到的指针值和uintptr值之间的桥梁。也就是说,通过它,我们可以在这两种值之上进行双向的转换。

问:Go语言中哪些值是不可寻址的?

答:

const num = 123
//_ = &num // 常量不可寻址。
//_ = &(123) // 基本类型值的字面量不可寻址。
//_ = &(123 + 456) // 算术操作的结果值不可寻址。
//_ = &([3]int{1, 2, 3}[0]) // 对数组字面量的索引结果值不可寻址。
//_ = &([3]int{1, 2, 3}[0:2]) // 对数组字面量的切片结果值不可寻址。
_ = &([]int{1, 2, 3}[0]) // 对切片字面量的索引结果值却是可寻址的。
//_ = &([]int{1, 2, 3}[0:2]) // 对切片字面量的切片结果值不可寻址。
//_ = &(map[int]string{1: "a"}[0]) // 对字典字面量的索引结果值不可寻址。
var str = "abc"
_ = str
//_ = &(str[0]) // 对字符串变量的索引结果值不可寻址。
//_ = &(str[0:2]) // 对字符串变量的切片结果值不可寻址。
str2 := str[0]
_ = &str2 // 但这样的寻址就是合法的。
var map1 = map[int]string{1: "a", 2: "b", 3: "c"}
_ = map1
//_ = &(map1[2]) // 对字典变量的索引结果值不可寻址。
//_ = &(fmt.Sprintf) // 标识符代表的函数不可寻址。
//_ = &(fmt.Sprintln("abc")) // 对函数的调用结果值不可寻址。

dog := Dog{"little pig"}
_ = dog
//_ = &(dog.Name) // 标识符代表的函数不可寻址。
//_ = &(dog.Name()) // 对方法的调用结果值不可寻址。
//_ = &(Dog{"little pig"}.name) // 结构体字面量的字段不可寻址。
//_ = &(interface{}(dog)) // 类型转换表达式的结果值不可寻址。
dogI := interface{}(dog)
_ = dogI
//_ = &(dogI.(Named)) // 类型断言表达式的结果值不可寻址。
named := dogI.(Named)
_ = named
//_ = &(named.(Dog)) // 类型断言表达式的结果值不可寻址。
var chan1 = make(chan int, 1)
chan1 <- 1
//_ = &(<-chan1) // 接收表达式的结果值不可寻址。

原因:
1.不可变的值不可寻址。常量、基本类型的值字面量、字符串变量的值、函数以及方法的字面量都是如此。这样规定有安全方面的考虑。

2.绝大多数被视为临时结果的值都是不可寻址的。算术操作的结果值属于临时结果,针对值字面量的表达式结果值也属于临时结果。但有一个例外,对切片字面量的索引结果值虽然也属于临时结果,但却是可寻址的。

3.若拿到的某值的指针可能会破坏程序的一致性,那么就是不安全的,该值就不可寻址。由于字典的内部机制,对字典的索引结果值的取值操作都是不安全的。另外,获取由字面量或标识符代表的函数或方法的地址显然也是不安全的。

最后,如果我们把临时结果赋给一个变量,那么它就是可寻址的了。如此一来,取得的指针向就是这个变量持有的那个值了。

问:不可寻址的值在使用上有哪些限制?
答:
 无法使用取址操作符&获取它们的指针,会使编译器报错。

demo:

func New(name string) Dog {
      return Dog(name)
}
New("litter pig").SetName("monster")

调用表达式dog.SetName("monster")会被自动地转译成(&dog).SetName("monster")
由于New函数的调用结果是不可寻址的,所以无法进行取址操作。因此,编译器会报告两个错误,1:不能在New("litter pig")的结果值上调用指针方法 ; 2:不能取得New("litter pig")的地址。


问:怎样通过unsafe.Pointer操纵可寻址的值?
答:
demo:

dog := Dog{"litter pig"}
dogP := &dog
dogPtr := uintPtr(unsafe.Pointer(dogP))

 先声明了一个Dog类型的变量dog,然后用取址操作符&,取出了它的指针值,并把它赋给了变量dogP.
 最后,使用了两个类型转换,先把dogP转换成一个unsafe.Pointer类型的值,然后紧接着又把后者转换成了一个uintptr的值,并把它赋给了变量dogPtr。这背后隐藏着一些转换规则:

1.一个指针值(比如*Dog类型的值)可以被转换为一个unsafe.Pointer类型的值,反之亦然。

2.一个uintptr类型的值也可以被转换为一个unsafe.Pointer类型的值,反之亦然。

3.一个指针值无法被直接转换成一个uintptr类型的值,反过来也是如此。

namePtr := dogPtr + unsafe.Offestof(dog.name)
nameP := (*string)(unsafe.Pointer(namePtr))

unsafe.Offestof函数用于获取两个值在内存中的起始存储地址之间的偏移量,以字节为单位。

通过偏移量跟结构体在内存中的起始存储地址(dogPtr ),把它们相加我们就可以得到dogP的name字段值的起始存储地址(namePtr );
再通过两次类型转换把namePtr 的值转换成一个*string的类型的值,就得到了指向dogP的name字段的指针值。

上一篇下一篇

猜你喜欢

热点阅读