一 NSObject alloc 探索
引入
打印三个person对象地址
LGPerson *p1 = [LGPerson alloc];
LGPerson *p2 = [p1 init];
LGPerson *p3 = [p1 init];
LGNSLog(@"%@ - %p - %p",p1,p1,&p1);
LGNSLog(@"%@ - %p - %p",p2,p2,&p2);
LGNSLog(@"%@ - %p - %p",p3,p3,&p3);
<LGPerson: 0x600000964100> - 0x600000964100 - 0x7ffee3f810c8
<LGPerson: 0x600000964100> - 0x600000964100 - 0x7ffee3f810c0
<LGPerson: 0x600000964100> - 0x600000964100 - 0x7ffee3f810b8
可以看到对象的地址不一样,但指向的开辟的内存空间为同一个
下面我们看看alloc到底做了什么事情,给alloc打断点,无法查看源码.
寻码
1.添加Symbolic Breakpoint ,symbolic为alloc,运行到断点位置
libobjc.A.dylib`+[NSObject alloc]:
2.在p1处添加断点,运行之后 按住control和step into,看到 objc_alloc,添加Symbolic Breakpoint,symbolic为objc_alloc,可以看到库位libobjc.A.dylib
3.在p1处添加断点,运行之后
断点进入.png
发现 objc_alloc,进入之后同2
发现其来源库,寻找苹果开源库
探索
下载 objc-781
编辑成可执行程序参考
Showing Recent Messages unable to find sdk 'macosx.internal'错误 buildsetting里找到baseSDK 修改为 macOS
main函数断点进不去 除了清缓存 关闭Enable Hardened Runtime,还要在Build Phases - Compile Sources 中main调到上面
查看alloc源码
+ (id)alloc {
return _objc_rootAlloc(self);
}
id
_objc_rootAlloc(Class cls)
{
return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
if (slowpath(checkNil && !cls)) return nil;
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
return _objc_rootAllocWithZone(cls, nil);
}
#endif
// No shortcuts available.
if (allocWithZone) {
return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
}
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}
NEVER_INLINE
id
_objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
{
// allocWithZone under __OBJC2__ ignores the zone parameter
return _class_createInstanceFromZone(cls, 0, nil,
OBJECT_CONSTRUCT_CALL_BADALLOC);
}
static ALWAYS_INLINE id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
int construct_flags = OBJECT_CONSTRUCT_NONE,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
ASSERT(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size;
// 1:要开辟多少内存
size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
// 2;怎么去申请内存
obj = (id)calloc(1, size);
}
if (slowpath(!obj)) {
if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
return _objc_callBadAllocHandler(cls);
}
return nil;
}
// 3: ?
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (fastpath(!hasCxxCtor)) {
return obj;
}
construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
return object_cxxConstructFromClass(obj, cls, construct_flags);
}
通过方法断点一个个添加,查到到底使用了什么方法,找到了_class_createInstanceFromZone来开辟内存空间,我们发现有些方法没有进入,这就是编译器优化
编译器优化.png
在这里可以调整编译速度
代码中很多的slowpath(),fastpath()就会直接跳过
开辟
// 1:要开辟多少内存
size = cls->instanceSize(extraBytes);
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
通过16字节对齐算法,算出占用多少内存
static inline size_t align16(size_t x) {
return (x + size_t(15)) & ~size_t(15);
}
// 2;开辟内存,返回地址指针
obj = (id)calloc(1, size);
// 3: 将开辟的内存和对象绑定在一块
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
对比
+ (id)init {
return (id)self;
}
可以看到init返回的是对象本身,这里的init是用户提供定制化开发
+ (id)new {
return [callAlloc(self, false/*checkNil*/) init];
}
所以new = [alloc init]
在声明一个指针变量的时候我们可以看到对象占有的为16个字节
一个变量.png
在声明两个指针变量的时候我们可以看到对象占有的为32个字节
两个变量.png
再详细的查看储存的内容
x:4gx查看内容.png
所以我们的属性来影响对象内存的大小
(前8个字节是isa)
#define FAST_DATA_MASK 0x00007ffffffffff8UL
po isa & 0x00007ffffffffff8UL 可以查看对象名字