生物信息学与算法«怎么制作生信美图»血清血液肿瘤标志物

【r<-方案|分享】分面生存曲线

2019-06-06  本文已影响23人  王诗翔

从<https://rpkgs.datanovia.com/survminer/reference/ggsurvplot_facet.html>拷贝的示例

library(survival)
library(survminer)

# Facet by one grouping variables: rx
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
fit <- survfit(Surv(time, status) ~ sex, data = colon)
ggsurvplot_facet(fit, colon, facet.by = "rx",
                palette = "jco", pval = TRUE)
image
# Facet by two grouping variables: rx and adhere
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
ggsurvplot_facet(fit, colon, facet.by = c("rx", "adhere"),
                palette = "jco", pval = TRUE)
image
# Another fit
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
fit2 <- survfit(Surv(time, status) ~ sex + rx, data = colon)
ggsurvplot_facet(fit2, colon, facet.by = "adhere",
                palette = "jco", pval = TRUE)
image
上一篇 下一篇

猜你喜欢

热点阅读