初探circlize绘制弦图
2021-07-15 本文已影响0人
R语言数据分析指南
一直以来在介绍的数据可视化案例展示中,一直是围绕ggplot2而展开的,但是R中优秀的程序包除了ggplot2还有不少,如circlize,ggtree等,circlize在绘制弦图方面真是无敌的存在,因此本节就通过一个小例子来演示如何通过circlize绘制弦图,后期将陆续推出一系列相关教程,各位观众老爷敬请期待
加载R包
library(tidyverse)
library(ggtext)
library(circlize)
载入数据
netflix <- read_csv("netflix_titles.csv")
数据清洗
netflix_lgbtq <- netflix %>%
filter(str_detect(listed_in,"LGBTQ Movies")) %>%
separate(listed_in,into = c("genre1", "genre2", "genre3"),
sep = ", ",fill = "right") %>%
separate(date_added, into = c(NA, "added_year"), sep = ", ") %>%
mutate(country = if_else(str_detect(title, "Wish You"),
"South Korea", country),
added_year = as.numeric(added_year)) %>%
pivot_longer(genre1:genre3, names_to = "genre_num", values_to = "genre")
chord_lgbtq <- netflix_lgbtq %>%
filter(!is.na(genre) & genre != "LGBTQ Movies") %>%
mutate(genre = factor(genre),
added_year = as_factor(added_year)) %>%
group_by(genre) %>%
mutate(count_genre = n()) %>%
filter(count_genre > 1) %>%
ungroup() %>%
group_by(genre, added_year) %>%
count() %>%
ungroup()
自定义颜色
grid.col = c(`Comedies` = "#FF69B6",
`Cult Movies` = "#FF0018",
`Documentaries` = "#FFA52C",
`Dramas` = "green",
`Independent Movies` = "#008018",
`International Movies` = "#00C0C0",
`Music & Musicals` = "#400098",
`Romantic Movies` = "#86007D",
`2015` = "green",`2016` = "green",
`2017` = "green", `2018` = "green",
`2019` = "green", `2020` = "green",
`2021` = "green")
数据可视化
circos.par(canvas.xlim=c(-1,1),canvas.ylim=c(-1,1),start.degree = 0)
chordDiagram(chord_lgbtq,
order = c("Romantic Movies","Music & Musicals",
"International Movies",
"Independent Movies", "Dramas",
"Documentaries", "Cult Movies",
"Comedies", "2015", "2016", "2017",
"2018", "2019", "2020", "2021"),
link.sort = FALSE,
link.decreasing = TRUE,
grid.col = grid.col,
transparency = 0.1,
annotationTrack = "grid",
preAllocateTracks = list(track.height = .1))
文本添加
for(si in get.all.sector.index()) {
myCol <- grid.col[si]
xlim = get.cell.meta.data("xlim",sector.index = si,track.index = 1)
ylim = get.cell.meta.data("ylim",sector.index = si,track.index = 1)
circos.text(mean(xlim), ylim[1],labels = si,sector.index = si,
track.index = 1,
facing = "clockwise",
col = myCol,
cex=0.8,
adj=c(0,.5),
niceFacing = T)
}
circos.clear()
喜欢的小伙伴欢迎关注我的公众号
R语言数据分析指南,持续分享数据可视化的经典案例及一些生信知识,希望对大家有所帮助