高等代数

高等代数理论基础17:行列式按一行(列)展开

2018-12-29  本文已影响31人  溺于恐

行列式按一行(列)展开

定义:在行列式\begin{vmatrix}a_{11}&\cdots&a_{1j}&\cdots&a_{1n}\\ \vdots& &\vdots& &\vdots\\ a_{i1}&\cdots&a_{ij}&\cdots&a_{in}\\ \vdots& &\vdots& &\vdots\\ a_{n1}&\cdots&a_{nj}&\cdots&a_{nn}\end{vmatrix}中划去元素a_{ij}所在的第i行与第j列,剩下的(n-1)^2个元素按原来的排法构成一个n-1级行列式\begin{vmatrix}a_{11}&\cdots&a_{1,j-1}&a_{1,j+1}&\cdots&a_{1n}\\ \vdots& &\vdots& &\vdots\\ a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j+1}&\cdots&a_{i-1,n}\\ a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j+1}&\cdots&a_{i+1,n}\\ \vdots& &\vdots& &\vdots\\ a_{n1}&\cdots&a_{n,j-1}&a_{n,j+1}&\cdots&a_{nn}\end{vmatrix}称为元素a_{ij}的余子式,记作M_{ij}

n级与n-1级行列式的关系

\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1,n-1}&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2,n-1}&a_{2n}\\ \vdots&\vdots& &\vdots&\vdots\\ a_{n-1,1}&a_{n-1,2}&\cdots&a_{n-1,n-1}&a_{n-1,n}\\ 0&0&\cdots&0&1\end{vmatrix}

=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1,n-1}\\ a_{21}&a_{22}&\cdots&a_{2,n-1}\\ \vdots&\vdots& &\vdots\\ a_{n-1,1}&a_{n-1,2}&\cdots&a_{n-1,n-1}\end{vmatrix}

证明:

等式左端行列式展开式为

\sum\limits_{j_1j_2\cdots j_{n-1}j_n}(-1)^{\tau(j_1j_2\cdots j_{n-1}j_n)}a_{1j_1}a_{2j_2}\cdots a_{n-1,j_{n-1}}a_{nj_n}

其中只有j_n=n的项可能不为零,且a_{nn}=1

\therefore 左端为\sum\limits_{j_1j_2\cdots j_{n-1}n}(-1)^{\tau(j_1j_2\cdots j_{n-1}n)}a_{1j_1}a_{2j_2}\cdots a_{n-1,j_{n-1}}

显然j_1j_2\cdots j_{n-1}是1,2,\cdots,n-1的排列

且\tau(j_1j_2\cdots j_{n-1}n)=\tau(j_1j_2\cdots j_{n-1})

\therefore 等式成立\qquad \mathcal{Q.E.D}

A_{ij}=(-1)^{i+j}M_{ij}

证明:

对于n级行列式A,有

\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots& &\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix}

=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in},i=1,2,\cdots,n

令a_{i1}=\cdots=a_{i,j-1}=a_{i,j+1}=\cdots=a_{in}=0,a_{ij}=1

\therefore A_{ij}=A

=\begin{vmatrix}a_{11}&\cdots&a_{1,j-1}&a_{1j}&a_{1,j+1}&\cdots&a_{1n}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j}&a_{i-1,j+1}&\cdots&a_{i-1,n}\\ 0&\cdots&0&1&0&\cdots&0\\ a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j}&a_{i+1,j+1}&\cdots&a_{i+1,n}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{n1}&\cdots&a_{n,j-1}&a_{n,j}&a_{n,j+1}&\cdots&a_{n,n}\end{vmatrix}

=(-1)^{n-i}\begin{vmatrix}a_{11}&\cdots&a_{1,j-1}&a_{1j}&a_{1,j+1}&\cdots&a_{1n}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j}&a_{i-1,j+1}&\cdots&a_{i-1,n}\\ a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j}&a_{i+1,j+1}&\cdots&a_{i+1,n}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{n1}&\cdots&a_{n,j-1}&a_{n,j}&a_{n,j+1}&\cdots&a_{n,n}\\ 0&\cdots&0&1&0&\cdots&0\end{vmatrix}

=(-1)^{(n-i)+(n-j)}\begin{vmatrix}a_{11}&\cdots&a_{1,j-1}&a_{1,j+1}&\cdots&a_{1n}&a_{1j}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j+1}&\cdots&a_{i-1,n}&a_{i-1,j}\\ a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j+1}&\cdots&a_{i+1,n}&a_{i+1,j}\\ \vdots& &\vdots&\vdots&\vdots& &\vdots\\ a_{n1}&\cdots&a_{n,j-1}&&a_{n,j+1}&\cdots&a_{n,n}a_{n,j}\\ 0&\cdots&0&0&\cdots&0&1\end{vmatrix}

=(-1)^{2n-(i+j)}M_{ij}=(-1)^{i+j}M_{ij}\qquad\mathcal{Q.E.D}

代数余子式

定义:A_{ij}=(-1)^{i+j}M_{ij},其中A_{ij}称为元素a_{ij}的代数余子式

行列式等于某一行元素分别与它们代数余子式的乘积之和

在行列式中,一行的元素与另一行相应元素的代数余子式的乘积之和为零

a_{ij}=a_{kj},j=1,2,\cdots,n,k\neq i

a_{k1}A_{i1}+\cdots+a_{kn}A_{in}

=\begin{vmatrix}a_{11}&\cdots&a_{1n}\\ \vdots& &\vdots\\ a_{k1}&\cdots&a_{kn}\\ \vdots& &\vdots\\ a_{k1}&\cdots&a_{kn}\\ \vdots& &\vdots\\ a_{n1}&\cdots&a_{nn}\end{vmatrix}=0

定理:设d=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix},

\sum\limits_{s=1}^na_{ks}A_{is}=\begin{cases}d\qquad k=i\\0\qquad k\neq i\end{cases},

\sum\limits_{s=1}^na_{sl}A_{sj}=\begin{cases}d\qquad l=j\\0\qquad l\neq j\end{cases}

注:n=3时有几何意义

\alpha_1=(a_{11},a_{12},a_{13}),\alpha_2=(a_{21},a_{22},a_{23}),\alpha_3=(a_{31},a_{32},a_{33})

\alpha_2\times\alpha_3=(A_{11},A_{12},A_{13})

a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=\alpha_1\cdot(\alpha_2\times\alpha_3)

a_{21}A_{11}+a_{22}A_{12}+a_{23}A_{13}=\alpha_2\cdot(\alpha_2\times\alpha_3)=0

a_{31}A_{11}+a_{32}A_{12}+a_{33}A_{13}=\alpha_3\cdot(\alpha_2\times\alpha_3)=0

例:给定n级Vandermonde行列式d=\begin{vmatrix}1&1&1&\cdots&1\\ a_1&a_2&a_3&\cdots&a_n\\ a_1^2&a_2^2&a_3^2&\cdots&a_n^2\\ \vdots&\vdots&\vdots& &\vdots\\ a_1^{n-1}&a_2^{n-1}&a_3^{n-1}&\cdots&a_n^{n-1}\end{vmatrix},证明:\forall n(n\ge 2),d=\prod\limits_{1\le j\lt i\le n}(a_i-a_j)

证:

n=2时

\begin{vmatrix}1&1\\a_1&a_2\end{vmatrix}=a_2-a_1

结论显然成立

假设对n-1级Vandermonde行列式结论成立

则对n级Vandermonde行列式

由下而上,依次从每一行减去它上一行的a_1倍可得

d=\begin{vmatrix}1&1&1&\cdots&1\\ 0&a_2-a_1&a_3-a_1&\cdots&a_n-a_1\\ 0&a_2^2-a_1a_2&a_3^2-a_1a_3&\cdots&a_n^2-a_1a_n\\ \vdots&\vdots&\vdots& &\vdots\\ 0&a_2^{n-1}-a_1a_2^{n-2}&a_3^{n-1}a_1a_3^{n-2}&\cdots&a_n^{n-1}a_1a_n^{n-2}\end{vmatrix}

=\begin{vmatrix}a_2-a_1&a_3-a_1&\cdots&a_n-a_1\\ a_2^2-a_1a_2&a_3^2-a_1a_3&\cdots&a_n^2-a_1a_n\\ \vdots&\vdots& &\vdots\\ a_2^{n-1}-a_1a_2^{n-2}&a_3^{n-1}a_1a_3^{n-2}&\cdots&a_n^{n-1}a_1a_n^{n-2}\end{vmatrix}

=(a_2-a_1)(a_3-a_1)\cdots(a_n-a_1)\begin{vmatrix}1&1&\cdots&1\\ a_2&a_3&\cdots&a_n\\ \vdots&\vdots& &\vdots\\ a_2^{n-2}&a_3^{n-2}&\cdots&a_n^{n-2}\end{vmatrix}

后面的行列式为一个n-1级Vandermonde行列式

由归纳假设可知

它等于所有可能差a_i-a_j(2\le j\lt i\le n)的乘积

而包含a_1的差全部在前面出现了

\therefore 对n级Vandermonde行列式,结论成立

综上所述,\forall n(n\ge 2),d=\prod\limits_{1\le j\lt i\le n}(a_i-a_j)

注:Vandermonde行列式为零的充要条件是a_1,a_2,\cdots,a_n这n个数中至少有两个相等

例:证明:\begin{vmatrix}a_{11}&\cdots&a_{1k}&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots\\ a_{k1}&\cdots&a_{kk}&0&\cdots&0\\ c_{11}&\cdots&c_{1k}&b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots&\vdots& &\vdots\\ c_{r1}&\cdots&c_{rk}&b_{r1}&\cdots&b_{rr}\end{vmatrix}

=\begin{vmatrix}a_{11}&\cdots&a_{1k}\\ \vdots& &\vdots\\ a_{k1}&\cdots&a_{kk}\end{vmatrix}\begin{vmatrix}b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots\\ b_{r1}&\cdots&b_{rr}\end{vmatrix}

证:

k=1时,等式左端为

\begin{vmatrix}a_{11}&0&\cdots&0\\ c_{11}&b_{11}&\cdots&b_{1r}\\ \vdots&\vdots& &\vdots\\ c_{r1}&b_{r1}&\cdots&b_{rr}\end{vmatrix}

按第一行展开即得结论

假设k=m-1时结论成立

则k=m时,按第一行展开有

\begin{vmatrix}a_{11}&\cdots&a_{1m}&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots\\ a_{m1}&\cdots&a_{mm}&0&\cdots&0\\ c_{11}&\cdots&c_{1m}&b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots&\vdots& &\vdots\\ c_{r1}&\cdots&c_{rm}&b_{r1}&\cdots&b_{rr}\end{vmatrix}

=a_{11}\begin{vmatrix}a_{22}&\cdots&a_{2m}&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots\\ a_{m2}&\cdots&a_{mm}&0&\cdots&0\\ c_{12}&\cdots&c_{1m}&b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots&\vdots& &\vdots\\ c_{r2}&\cdots&c_{rm}&b_{r1}&\cdots&b_{rr}\end{vmatrix}+\cdots

+(-1)^{1+i}a_{1i}\begin{vmatrix}a_{21}&\cdots&a_{2,i-1}&a_{2,i+1}&\cdots&a_{2m}&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots&\vdots& &\vdots\\ a_{m1}&\cdots&a_{m,i-1}&a_{m,i+1}&\cdots&a_{mm}&0&\cdots&0\\ c_{11}&\cdots&c_{1,i-1}&a_{1,i+1}&\cdots&c_{1m}&b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots&\vdots& &\vdots&\vdots& &\vdots\\ c_{r1}&\cdots&c_{r,i-1}&c_{r,i+1}&\cdots&c_{rm}&b_{r1}&\cdots&b_{rr}\end{vmatrix}

+\cdots+(-1)^{1+m}a_{1m}\begin{vmatrix}a_{21}&\cdots&a_{2,m-1}&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots\\ a_{m1}&\cdots&a_{m,m-1}&0&\cdots&0\\ c_{11}&\cdots&c_{1,m-1}&b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots&\vdots& &\vdots\\ c_{r1}&\cdots&c_{r,m-1}&b_{r1}&\cdots&b_{rr}\end{vmatrix}

=\Bigg[a_{11}\begin{vmatrix}a_{22}&\cdots&a_{2m}\\ \vdots& &\vdots\\ a_{m2}&\cdots&a_{mm}\end{vmatrix}+\cdots

+(-1)^{1+i}a_{1i}\begin{vmatrix}a_{21}&\cdots&a_{2,i-1}&a_{2,i+1}&\cdots&a_{2m}\\ \vdots& &\vdots&\vdots& &\vdots\\ a_{m1}&\cdots&a_{m,i-1}&a_{m,i+1}&\cdots&a_{mm}\end{vmatrix}

+\cdots+(-1)^{1+m}a_{1m}\begin{vmatrix}a_{21}&\cdots&a_{2,m-1}\\ \vdots& &\vdots\\ a_{m1}&\cdots&a_{m,m-1}\end{vmatrix}\Bigg]\cdot \begin{vmatrix}b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots\\ b_{r1}&\cdots&b_{rr}\end{vmatrix}

=\begin{vmatrix}a_{11}&\cdots&a_{1m}\\ \vdots& &\vdots\\ a_{m1}&\cdots&a_{mm}\end{vmatrix}\begin{vmatrix}b_{11}&\cdots&b_{1r}\\ \vdots& &\vdots\\ b_{r1}&\cdots&b_{rr}\end{vmatrix}

综上所述,结论普遍成立

上一篇下一篇

猜你喜欢

热点阅读