迭代器,生成器,装饰器
迭代器
Python 迭代器(Iterators)对象在遵守迭代器协议时需要支持如下两种方法。
iter(),返回迭代器对象自身。这用在 for 和 in 语句中。
next(),返回迭代器的下一个值。如果没有下一个值可以返回,那么应该抛出 StopIteration 异常。
class Counter(object):
def __init__(self, low, high):
self.current = low
self.high = high
def __iter__(self):
return self
def __next__(self):
#返回下一个值直到当前值大于 high
if self.current > self.high:
raise StopIteration
else:
self.current += 1
return self.current - 1
现在我们能把这个迭代器用在我们的代码里。
>>> c = Counter(5,10)
>>> for i in c:
... print(i, end=' ')
...
5 6 7 8 9 10
请记住迭代器只能被使用一次。这意味着迭代器一旦抛出 StopIteration,它会持续抛出相同的异常。
>>> c = Counter(5,6)
>>> next(c)
5
>>> next(c)
6
>>> next(c)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 11, in next
StopIteration
>>> next(c)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 11, in next
StopIteration
生成器
生成器是更简单的创建迭代器的方法,这通过在函数中使用 yield 关键字完成:
>>> def my_generator():
... print("Inside my generator")
... yield 'a'
... yield 'b'
... yield 'c'
...
>>> my_generator()
<generator object my_generator at 0x7fbcfa0a6aa0>
在上面的例子中我们使用 yield 语句创建了一个简单的生成器。我们能在 for 循环中使用它,就像我们使用任何其它迭代器一样。
>>> for char in my_generator():
... print(char)
...
Inside my generator
a
b
c
在下一个例子里,我们会使用一个生成器函数完成与 Counter 类相同的功能,并且把它用在 for 循环中。
>>> def counter_generator(low, high):
... while low <= high:
... yield low
... low += 1
...
>>> for i in counter_generator(5,10):
... print(i, end=' ')
...
5 6 7 8 9 10
在 While 循环中,每当执行到 yield 语句时,返回变量 low 的值并且生成器状态转为挂起。在下一次调用生成器时,生成器从之前冻结的地方恢复执行然后变量 low 的值增一。生成器继续 while 循环并且再次来到 yield 语句...
生成器表达式
在这一节我们学习生成器表达式(Generator expressions),生成器表达式是列表推导式和生成器的一个高性能,内存使用效率高的推广。
举个例子,我们尝试对 1 到 9 的所有数字进行平方求和。
>>> sum([x*x for x in range(1,10)])
这个例子实际上首先在内存中创建了一个平方数值的列表,然后遍历这个列表,最终求和后释放内存。你能理解一个大列表的内存占用情况是怎样的。
我们可以通过使用生成器表达式来节省内存使用。
>>> sum(x*x for x in range(1,10))
生成器表达式的语法要求其总是直接在在一对括号内,并且不能在两边有逗号。这基本上意味着下面这些例子都是有效的生成器表达式用法示例:
>>> sum(x*x for x in range(1,10))
285
>>> g = (x*x for x in range(1,10))
>>> g
<generator object <genexpr> at 0x7fc559516b90>
我们可以把生成器和生成器表达式联系起来,在下面的例子中我们会读取文件 '/var/log/cron' 并且查看任意指定任务(例中我们搜索 'anacron' )是否成功运行。
闭包
闭包(Closures)是由另外一个函数返回的函数。我们使用闭包去除重复代码。在下面的例子中我们创建了一个简单的闭包来对数字求和。
>>> def add_number(num):
... def adder(number):
... #adder 是一个闭包
... return num + number
... return adder
...
>>> a_10 = add_number(10)
>>> a_10(21)
31
>>> a_10(34)
44
>>> a_5 = add_number(5)
>>> a_5(3)
8
adder 是一个闭包,把一个给定的数字与预定义的一个数字相加。
装饰器
装饰器(Decorators)用来给一些对象动态的添加一些新的行为,我们使用过的闭包也是这样的。
我们会创建一个简单的示例,将在函数执行前后打印一些语句。
>>> def my_decorator(func):
... def wrapper(*args, **kwargs):
... print("Before call")
... result = func(*args, **kwargs)
... print("After call")
... return result
... return wrapper
...
>>> @my_decorator
... def add(a, b):
... #我们的求和函数
... return a + b
...
>>> add(1, 3)
Before call
After call
4