Leetcode

2019-02-17

2019-02-17  本文已影响0人  ruicore
LeetCode 310. Minimum Height Trees.jpg

LeetCode 310. Minimum Height Trees

Description

For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3 

Output: [1]

Example 2 :

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5 

Output: [3, 4]

Note:

描述

对于一个具有树特征的无向图,我们可选择任何一个节点作为根。图因此可以成为树,在所有可能的树中,具有最小高度的树被称为最小高度树。给出这样的一个图,写出一个函数找到所有的最小高度树并返回他们的根节点。

注意:

该图包含 n 个节点,标记为 0 到 n - 1。给定数字 n 和一个无向边 edges 列表(每一个边都是一对标签)。

你可以假设没有重复的边会出现在 edges 中。由于所有的边都是无向边, [0, 1]和 [1, 0] 是相同的,因此不会同时出现在 edges 里。

示例 1:

输入: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3 

输出: [1]

示例 2:

输入: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5 

输出: [3, 4]

说明:

思路

# -*- coding: utf-8 -*-
# @Author:             何睿
# @Create Date:        2019-02-17 13:46:09
# @Last Modified by:   何睿
# @Last Modified time: 2019-02-17 14:15:30


class Solution:
    def findMinHeightTrees(self, n: 'int',edges: 'List[List[int]]') -> 'List[int]':
        # 如果只有一个节点,直接返回当前节点
        if n == 1: return [0]
        # 路径:记录每个节点可以访问到的所有节点 type:list[set()]
        # 更一般的情况是利用字典实现,利用节点作为键,节点能够走到的所有节点
        # 组成的set作为值,但是题中得节点为从0开始的数值,因此可以用list代替字典
        paths = [set() for _ in range(n)]
        #  找到每个节点可以走到的下一个节点
        for node1, node2 in edges:
            paths[node1].add(node2)
            paths[node2].add(node1)
        # 找到所有的叶子节点
        leaves = [node for node in range(n) if len(paths[node]) == 1]
        # root用于记录剩下的节点
        roots = n
        while roots > 2:
            # 更新剩下的节点个数
            roots -= len(leaves)
            # 新的叶子节点
            newleaves = []
            for node in leaves:
                # 获取叶节点的父节点
                parent = paths[node].pop()
                # 从叶节点的父节点中删除当前节点
                paths[parent].remove(node)
                # 如果当前节点的父节点只能访问一个节点,则添加到新叶节点中
                if len(paths[parent]) == 1: newleaves.append(parent)
            leaves = newleaves
        return leaves

源代码文件在这里.
©本文首发于何睿的博客,欢迎转载,转载需保留文章来源,作者信息和本声明.

上一篇下一篇

猜你喜欢

热点阅读