R语言学习笔记收入即学习生信学习

R语言pROC包绘制ROC曲线

2019-07-30  本文已影响0人  医科研

作者:白介素2
相关阅读:
R语言-multiROC package
R语言生存分析04-Cox比例风险模型诊断
R语言生存分析03-Cox比例风险模型
R语言生存分析-02-ggforest
R语言生存分析-01
生存曲线

如果没有时间精力学习代码,推荐了解:零代码数据挖掘课程

pROC package

以下是本包中常用的一些缩写

require(pROC)
data(aSAH)
if(!require(DT)) install.packages(DT)
DT::datatable(aSAH)
aSAH[1:5,1:5]
image.png

roc函数建立roc曲线

library(dplyr)
aSAH %>% 
    filter(gender == "Female") %>%
    roc(outcome, s100b)
Call:
roc.data.frame(data = ., response = outcome, predictor = s100b)

Data: s100b in 50 controls (outcome Good) < 21 cases (outcome Poor).
Area under the curve: 0.72

coords函数中筛选有效的的坐标

library(dplyr)
aSAH %>% 
    filter(gender == "Female") %>%
    roc(outcome, s100b) %>%
    coords(transpose=FALSE) %>%
    filter(sensitivity > 0.6, 
           specificity > 0.6)
 threshold specificity sensitivity
1     0.155        0.68   0.6666667
2     0.165        0.74   0.6666667
3     0.175        0.76   0.6666667
4     0.185        0.78   0.6666667
5     0.215        0.80   0.6666667
6     0.245        0.82   0.6666667
7     0.255        0.82   0.6190476 

建立roc 对象的方法

# Build a ROC object and compute the AUC
roc(aSAH$outcome, aSAH$s100b)
roc(outcome ~ s100b, aSAH)

建立光滑曲线

# Smooth ROC curve
roc(outcome ~ s100b, aSAH, smooth=TRUE)
Call:
roc.formula(formula = outcome ~ s100b, data = aSAH, smooth = TRUE)

Data: s100b in 72 controls (outcome Good) < 41 cases (outcome Poor).
Smoothing: binormal 
Area under the curve: 0.74

可信区间与绘图

# more options, CI and plotting
roc1 <- roc(aSAH$outcome,
            aSAH$s100b, percent=TRUE,
            # arguments for auc
            partial.auc=c(100, 90), partial.auc.correct=TRUE,
            partial.auc.focus="sens",
            # arguments for ci
            ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
            # arguments for plot
            plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
            print.auc=TRUE, show.thres=TRUE)
## 在原有图形上继续绘制
roc2 <- roc(aSAH$outcome, aSAH$wfns,
            plot=TRUE, add=TRUE, percent=roc1$percent)
image.png

找出感兴趣的坐标

## Coordinates of the curve ##
coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"),transpose = FALSE
       )
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"),transpose = FALSE)
  threshold sensitivity specificity      ppv      npv
local.maximas        -Inf   100.00000     0.00000 36.28319      NaN
local.maximas.1       1.5    95.12195    51.38889 52.70270 94.87179
local.maximas.2       2.5    65.85366    79.16667 64.28571 80.28169
local.maximas.3       3.5    63.41463    83.33333 68.42105 80.00000
local.maximas.4       4.5    43.90244    94.44444 81.81818 74.72527
local.maximas.5       Inf     0.00000   100.00000      NaN 63.71681

计算AUC可信区间

# CI of the AUC
ci(roc2)

95% CI: 74.85%-89.88% (DeLong)

plot在原有图形上增加

roc1 <- roc(aSAH$outcome,
            aSAH$s100b, percent=TRUE,
            # arguments for auc
            partial.auc=c(100, 90), partial.auc.correct=TRUE,
            partial.auc.focus="sens",
            # arguments for ci
            ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
            # arguments for plot
            plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
            print.auc=TRUE, show.thres=TRUE)
plot(roc2, add=TRUE)
image.png

比较AUC

# Test on the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE)
DeLong's test for two correlated ROC curves

data:  roc1 and roc2
Z = -2.209, p-value = 0.02718
alternative hypothesis: true difference in AUC is not equal to 0
sample estimates:
AUC of roc1 AUC of roc2 
   73.13686    82.36789 

绘制ROC曲线-基于ggplot2

  1. 创建roc对象
  2. ggroc绘图
# Create a basic roc object
data(aSAH)
rocobj <- roc(aSAH$outcome, aSAH$s100b)
rocobj2 <- roc(aSAH$outcome, aSAH$wfns)

绘图

  1. 基础绘图
library(ggplot2)
g <- ggroc(rocobj)
g
image.png
  1. 美化参数设置
ggroc(rocobj, alpha = 0.5, colour = "red", linetype = 2, size = 2)
image.png

支持gglot2语法的美化

# You can then your own theme, etc.
g + theme_minimal() + ggtitle("My ROC curve") + 
    geom_segment(aes(x = 1, xend = 0, y = 0, yend = 1), color="grey", linetype="dashed")
image.png

修改横纵坐标

# And change axis labels to FPR/FPR
gl <- ggroc(rocobj, legacy.axes = TRUE)
gl
gl + xlab("FPR") + ylab("TPR") + 
    geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="darkgrey", linetype="dashed")
image.png
image.png

绘制多条曲线

# Multiple curves:
g2 <- ggroc(list(s100b=rocobj, wfns=rocobj2, ndka=roc(aSAH$outcome, aSAH$ndka)))
g2
image.png
# This is equivalent to using roc.formula:
roc.list <- roc(outcome ~ s100b + ndka + wfns, data = aSAH)
g.list <- ggroc(roc.list)
g.list
image.png

美化修改

# with additional aesthetics:
g3 <- ggroc(roc.list, size = 1.2,alpha=.6)
g3+ggsci::scale_color_lancet()

image.png

改变参数

g4 <- ggroc(roc.list, aes="linetype", color="red")
g4
image.png

按多种属性区分ROC曲线

# changing multiple aesthetics:
g5 <- ggroc(roc.list, aes=c("linetype", "color"))
g5

image.png

分面绘制ROC曲线

# OR faceting
g.list + facet_grid(.~name) + theme(legend.position="none")
image.png

所有曲线有相同颜色

# To have all the curves of the same color, use aes="group":
g.group <- ggroc(roc.list, aes="group",color="red")
g.group
g.group + facet_grid(.~name)
image.png

我是白介素2,本期内容就到这里,下期再见

上一篇 下一篇

猜你喜欢

热点阅读