机器学习——常见的损失函数
通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越小,通常模型的性能越好。不同的算法使用的损失函数不一样。
损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为如下:
上式中的第二项就是正则项,它可以是L1,也可以是L2,或者其他的正则函数。
参数越多,模型越复杂,而越复杂的模型越容易过拟合。过拟合就是说模型在训练数据上的效果远远好于在测试集上的性能。此时可以考虑正则化,通过设置正则项前面的hyper parameter,来权衡损失函数和正则项,减小参数规模,达到模型简化的目的,从而使模型具有更好的泛化能力。
0-1损失函数
0-1损失是指,预测值和目标值不相等为1,否则为0:
感知机就是用的这种损失函数。但是由于相等这个条件太过严格,因此我们可以放宽条件,即满足 |Y−f(X)|<T 时认为相等。
该损失函数不考虑预测值和真实值的误差程度,也就是只要预测错误,预测错误差一点和差很多是一样的。
绝对值损失函数
log对数损失函数(逻辑回归)
逻辑斯蒂回归的损失函数就是对数损失函数,在逻辑斯特回归的推导中,它假设样本服从伯努利分布(0-1)分布,然后求得满足该分布的似然函数,接着用对数求极值。逻辑斯蒂回归并没有求对数似然函数的最大值,而是把极大化当做一个思想,进而推导它的风险函数为最小化的负的似然函数。从损失函数的角度上,它就成为了log损失函数。
P(Y|X)通俗的解释就是:在当前模型的基础上,对于样本X,其预测值为Y,也就是预测正确的概率。由于概率之间的同时满足需要使用乘法,为了将其转化为加法,我们将其取对数。最后由于是损失函数,所以预测正确的概率越高,其损失值应该是越小,因此再加个负号取个反。
在极大似然估计中,通常都是先取对数再求导,再找极值点,这样做是方便计算极大似然估计。损失函数L(Y,P(Y|X))是指样本X在分类Y的情况下,使概率P(Y|X)达到最大值(利用已知的样本分布,找到最大概率导致这种分布的参数值)
由于逻辑回归是服从伯努利分布(0-1分布)的,并且逻辑回归返回的sigmoid值是处于(0,1)区间,不会取到0,1两个端点。因此我们能够将其损失函数写成以下形式:
逻辑回归最后得到的目标式子(所有样本的损失函数)如下:
如果是二分类的话,则m值等于2,如果是多分类,m就是相应的类别总个数。这里需要解释一下:之所以有人认为逻辑回归是平方损失,是因为在使用梯度下降来求最优解的时候,它的迭代式子与平方损失求导后的式子非常相似,从而给人一种直观上的错觉。
平方损失函数(最小二乘法)
最小二乘法是线性回归的一种方法,它将回归的问题转化为了凸优化的问题。在线性回归中,它假设样本和噪声都服从高斯分布(为什么假设成高斯分布呢?其实这里隐藏了一个小知识点,就是中心极限定理),最后通过极大似然估计(MLE)可以推导出最小二乘式子。
最小二乘法的基本原则是:最优拟合曲线应该使得所有点到回归直线的距离和最小。通常用欧几里得距离进行距离的度量。平方损失的损失函数为:
为什么它会选择使用欧式距离作为误差度量呢(即Mean squared error, MSE),主要有以下几个原因:
简单,计算方便;
欧氏距离是一种很好的相似性度量标准;
在不同的表示域变换后特征性质不变。
指数损失函数(Adaboost)
Hinge损失函数(SVM)
Hinge损失函数和SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于 :
这个式子和如下的式子非常像:
其中l(wxi+byi)就是hinge损失函数,后面相当于L2正则项。
Hinge函数的标准形式:
全局损失函数
上面的损失函数仅仅是对于一个样本来说的。而我们的优化目标函数应当是使全局损失函数最小。因此,全局损失函数往往是每个样本的损失函数之和,即:
对于平方损失函数,为了求导方便,我们可以在前面乘上一个1/2,和平方项求导后的2抵消,即:
参考资料
https://blog.csdn.net/weixin_37933986/article/details/68488339
https://www.cnblogs.com/luxiao/p/5783017.html
https://blog.csdn.net/qq547276542/article/details/77980042