iOS开发iOS开发杂货铺iOS精英班

Load和Initialize往死了问是一种怎样的体验?

2017-08-08  本文已影响899人  si1ence

这个问题有点炒冷饭了,写了 demo 才更深入的了解这个问题,就当做个简单的笔记吧

一. Load和Initialize的往死了问是一种怎样的体验?
  1. Load 和 Initialize 先加载哪个?
  2. 父类和子类以及 Category 的关系?
  3. 如果是多个 Category 呢?
Load

开发文档的直接解读


加载顺序总结

比如,现有Student 继承于 Person,Student拥有多个分类,在各个类的 + load 方法进行打印,结果如下

2017-06-26 18:30:59.857400+0800 load[70593:5621604] Person ==> Load
2017-06-26 18:30:59.857596+0800 load[70593:5621604] Student ==> Load
2017-06-26 18:30:59.857656+0800 load[70593:5621604] Test2 ==> Load
2017-06-26 18:30:59.857707+0800 load[70593:5621604] Test1 ==> Load
2017-06-26 18:30:59.857724+0800 load[70593:5621604] Student + load2 ==> Load
2017-06-26 18:30:59.857730+0800 load[70593:5621604] Student + load3 ==> Load
2017-06-26 18:30:59.857736+0800 load[70593:5621604] Student + load1 ==> Load

查看 Compile Sources,观察 Student 三个分类的加载顺序,与 load 调用顺序一致

runtime 源码阅读

首先看下 objc-runtime-new.mm 中的 void prepare_load_methods(header_info *hi) 函数,在该函数中准备好 类和分类执行 +load 方法的必要条件,以供接下来的调用

void prepare_load_methods(header_info *hi)
{
    size_t count, i;

    rwlock_assert_writing(&runtimeLock);

    classref_t *classlist =
        _getObjc2NonlazyClassList(hi, &count);
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }

    category_t **categorylist = _getObjc2NonlazyCategoryList(hi, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        realizeClass(cls);
        assert(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}

同时,在处理类的时候,也调用了同文件中的另外一个函数 static void schedule_class_load(Class cls)

static void schedule_class_load(Class cls)
{
    if (!cls) return;
    assert(cls->isRealized());  // _read_images should realize

    if (cls->data()->flags & RW_LOADED) return;
# warning 此处使用递归的思想实现了先调用父类再调用子类的 +load 方法
    // Ensure superclass-first ordering
    schedule_class_load(cls->superclass);

    add_class_to_loadable_list(cls);
    cls->setInfo(RW_LOADED);
}

当前所有满足 +load 方法调用条件的类和分类就被分别存放在全局变量 loadable_classes (load_images 方法调用)和 loadable_categories 中了

准备好类和分类后,接下来就是对它们的 +load 方法进行调用了。打开文件 objc-loadmethod.m ,找到其中的 void call_load_methods(void) 函数。

void call_load_methods(void)
{
    static BOOL loading = NO;
    BOOL more_categories;

    recursive_mutex_assert_locked(&loadMethodLock);

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

同样的,这个函数的作用就是调用上一步准备好的类和分类中的 +load 方法,并且确保类优先于分类的顺序。我们继续查看在这个函数中调用的另外两个关键函数 static void call_class_loads(void) 和 static BOOL call_category_loads(void) 。由于这两个函数的作用大同小异,下面就以篇幅较小的 static void call_class_loads(void) 函数为例进行探讨

static void call_class_loads(void)
{
    int i;

    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;

    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue;

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, SEL_load);
    }

    // Destroy the detached list.
    if (classes) _free_internal(classes);
}

这个函数的作用就是真正负责调用类的 +load 方法了。它从全局变量 loadable_classes 中取出所有可供调用的类,并进行清零操作。

// 指向 用于保存类信息的内存的首地址
loadable_classes = nil;
// 标识已分配的内存空间大小
loadable_classes_allocated = 0;
// 标识已使用的内存空间大小
loadable_classes_used = 0;

load_images -> load_images_nolock -> prepare_load_methods -> schedule_class_load -> add_class_to_loadable_list 的时候会将未加载的类添加到 loadable_classes

调用类和分类的 +load 方法是直接使用函数内存地址的方式 (*load_method)(cls, SEL_load); ,而不是使用发送消息 objc_msgSend 的方式。
调用 load 方法之前,所有的 framework 都已经加载到了运行时中,所以调用 framework 中的方法都是安全的

Initialize

首先看一下苹果官方文档对 Initialize 的定义

打开 objc-runtime-new.mm,找到以下函数

// 当我们给某个类发送消息的时候,runtime会调用这个函数在类中查找相应方法的实现或转发
#warning 考虑以上特性,说明该类接收到第一条消息之前才会调用 +initialize 方法
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
                       bool initialize, bool cache, bool resolver)
{
    ...
        rwlock_unlock_write(&runtimeLock);
    }
    # warning 注:当类没有初始化时, runtime 会调用 void _class_initialize(Class cls) 函数对该类进行初始化
    if (initialize  &&  !cls->isInitialized()) {
        _class_initialize (_class_getNonMetaClass(cls, inst));
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

    // The lock is held to make method-lookup + cache-fill atomic 
    // with respect to method addition. Otherwise, a category could 
    ...
}

接下来看看具体的初始化代码

void _class_initialize(Class cls)
{
    ...
    Class supercls;
    BOOL reallyInitialize = NO;
#warning 同样使用递归的思想实现了先调用父类再调用子类的顺序
    // Make sure super is done initializing BEFORE beginning to initialize cls.
    // See note about deadlock above.
    supercls = cls->superclass;
    if (supercls  &&  !supercls->isInitialized()) {
        _class_initialize(supercls);
    }

    // Try to atomically set CLS_INITIALIZING.
    monitor_enter(&classInitLock);
    if (!cls->isInitialized() && !cls->isInitializing()) {
        cls->setInitializing();
        reallyInitialize = YES;
    }
    monitor_exit(&classInitLock);

    if (reallyInitialize) {
        // We successfully set the CLS_INITIALIZING bit. Initialize the class.

        // Record that we're initializing this class so we can message it.
        _setThisThreadIsInitializingClass(cls);

        // Send the +initialize message.
        // Note that +initialize is sent to the superclass (again) if 
        // this class doesn't implement +initialize. 2157218
        if (PrintInitializing) {
            _objc_inform("INITIALIZE: calling +[%s initialize]",
                         cls->nameForLogging());
        }
#warning 注意这里使用了 objc_msgSend,就意味着该方法就和其他普通方法一样,子类要沿用父类的方法,分类会会覆盖本类中的方法。
#warning 同时,如果子类没有实现但父类实现了该方法,那么父类的该方法就要被实现多次
        ((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);

        if (PrintInitializing) {
            _objc_inform("INITIALIZE: finished +[%s initialize]",
    ...
}
#warning Person.m

// int 等基本类型可以在编译期进行赋值
static int numCount = 0; 
// 对象无法在编译器进行赋值
static NSMutableArray *dataSource;

+ (void)initialize {
    if (self == [Person class]) {
        // 不能在编译期赋值的对象在这里进行赋值
        dataSource = [[NSMutableArray alloc] init];
    }
}
异常情况:在A类的load 方法中调用了B类的类方法
@implementation Father
+ (void)load {
    NSLog(@"father==> load===%@", [Dog class]);
}

+(void)initialize {
    NSLog(@"Father===>initialize");
}
@end

#warning 打印结果如下
2017-08-09 11:19:09.838 tests[34274:8415363] Dog===>initialize
2017-08-09 11:19:09.839 tests[34274:8415363] father==> load===Dog
2017-08-09 11:19:09.839 tests[34274:8415363] Dog==> load
2017-08-09 11:19:09.840 tests[34274:8415363] child==> load
2017-08-09 11:19:09.840 tests[34274:8415363] child + hahha==> load
2017-08-09 11:19:09.840 tests[34274:8415363] main

以下是Compile Source 截图

总结
上一篇下一篇

猜你喜欢

热点阅读