最大子列和 —— 时间 O(n^3) -> O(n^2) ->
2019-03-22 本文已影响0人
zilla
- 写的超棒的reference
- 浙大数据结构
⚠️ 若某段序列中都是负数,最大子列和是0,该子列长度为0,因此max_sum
初始是0
-
分治的时空复杂度分析
-
分治(算法3),时间O(nlgn)
空间复杂度:递归栈深度O(lgn)
,存储原始数组O(n)
,整体为O(n+lgn) = O(n)
下面四种实现依次为 时间O(n^3) -> O(n^2) -> O(nlgn) -> O(n)
O(n)一定是最快的一级了,怎么着也要扫描一遍的。。。
#include <cstdio>
#include <ctime>
#include <algorithm>
using namespace std;
const int M = 10;
const int SIZE = 1000;
int data[SIZE] = {717};
clock_t start, stop;
double duration;
int max_subseq_sum_1(const int seq[], int size) {
int max_sum = 0;
for (int i = 0; i < size; ++i) {
for (int j = i; j < size; ++j) {
int sum = 0;
for (int k = i; k <= j; ++k) {
sum += seq[k];
}
max_sum = max(max_sum, sum);
}
}
return max_sum;
}
int max_subseq_sum_2(const int seq[], int size) {
int max_sum = 0;
for (int i = 0; i < size; ++i) {
int sum = 0;
for (int j = i; j < size; ++j) {
sum += seq[j];
max_sum = max(max_sum, sum);
}
}
return max_sum;
}
// divide and conquer
int conquer(const int seq[], int st, int ed) {
if (st < ed) {
/*
* 最大子列和可能出现在
* 1. st - mid
* 2. mid+1 - ed
* 3. 跨越分界 (含mid 和 mid+1的一段序列)
* 求出含mid的左部最大子序列和 含mid+1的右部最大子序列和 相加即可
* 取三者中最大的
*/
int mid = (st + ed) / 2;
int res1 = conquer(seq, st, mid);
int res2 = conquer(seq, mid + 1, ed);
int lsum_with_last = seq[mid], rsum_with_first = seq[mid + 1];
int lsum = lsum_with_last, rsum = rsum_with_first;
for (int i = mid - 1; i >= st; --i) {
lsum += seq[i];
lsum_with_last = max(lsum, lsum_with_last);
}
for (int i = mid + 2; i <= ed; ++i) {
rsum += seq[i];
rsum_with_first = max(rsum, rsum_with_first);
}
int res3 = lsum_with_last + rsum_with_first;
return max(max(res1, res2), res3);
} else {
return seq[st];
}
}
int max_subseq_sum_3(const int seq[], int size) {
return conquer(seq, 0, size - 1);
}
//在线处理
int max_subseq_sum_4(const int seq[], int size) {
int max_sum = 0, sum = 0;
for (int i = 0; i < size; ++i) {
sum += seq[i];
sum > 0 ? max_sum = max(sum, max_sum) : sum = 0;
}
return max_sum;
}
int main() {
// printf("%d", CLOCKS_PER_SEC);
int res1, res2, res3, res4;
for (int i = 1; i < SIZE; ++i) {
data[i] = data[i - 1] / 2 - 1000 + i * i;
}
start = clock();
for (int i = 0; i < M; ++i) {
res1 = max_subseq_sum_1(data, SIZE);
}
stop = clock();
duration = (double) (stop - start) / CLOCKS_PER_SEC;
printf("res1 %d duration 1 : %lf sec\n", res1, duration);
start = clock();
for (int i = 0; i < M; ++i) {
res2 = max_subseq_sum_2(data, SIZE);
}
stop = clock();
duration = (double) (stop - start) / CLOCKS_PER_SEC;
printf("res2 %d duration 2 : %lf sec\n", res2, duration);
start = clock();
for (int i = 0; i < M; ++i) {
res3 = max_subseq_sum_3(data, SIZE);
}
stop = clock();
duration = (double) (stop - start) / CLOCKS_PER_SEC;
printf("res3 %d duration 3 : %lf sec\n", res3, duration);
start = clock();
for (int i = 0; i < M; ++i) {
res4 = max_subseq_sum_4(data, SIZE);
}
stop = clock();
duration = (double) (stop - start) / CLOCKS_PER_SEC;
printf("res4 %d duration 4 : %lf sec\n", res4, duration);
return 0;
}
/*
* 10 * 1000
* res1 661720035 duration 1 : 3.117018 sec
* res2 661720035 duration 2 : 0.019138 sec
* res3 661720035 duration 3 : 0.000488 sec
* res4 661720035 duration 4 : 0.000038 sec
*/
时O(n) 空O(1),网页上直接写ac了😄
另一题,二分