蒙特·卡罗算法Python实例解析

2017-02-08  本文已影响1638人  道阻且长_行则将至

一 背景

此算法诞生的背景是:

  1. 曼哈顿计划,有极大的计算需求。
  2. 计算机刚开始发展,最适合做计算。

蒙特卡洛算法理论基础是概率论,实际就是暴力计算逼近理想结果。正是在以上两个背景下,它刚好得到了极大的应用和发展。

二 概念

蒙特·卡罗算法,也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

三 实例

上面叙述的是定义,我来描述一个例子:蒙特卡罗法计算圆周率

1.问题描述

2.代码

import random 
import math
def main():
    print '请输入迭代的次数:'
    n=int(raw_input())   #n是随机的次数  
    total=0   #total是所有落入圆内的随机点
    for i in xrange(n):
        x=random.random()
        y=random.random()
        if math.sqrt(x**2+y**2)<1.0:   #判断是否落入圆内
            total+=1
    mypi=4.0*total/n   #得到Pi值
    print '迭代次数是',n,'Pi的值是:',mypi
    print '数学pi:',math.pi
    print '误差是:',abs(math.pi-mypi)/math.pi   #计算误差
    
main()

3.结果

上一篇 下一篇

猜你喜欢

热点阅读