基因注释/富集分析与功能分类GEO数据挖掘

R语言GEO数据挖掘:步骤四:富集分析KEGG,GO

2019-03-27  本文已影响211人  mayoneday

1.读取第三部存储数据(基因差异表达情况)

rm(list = ls())  ## 魔幻操作,一键清空~
load(file = 'deg.Rdata')
head(deg)
deg

2.设定阈值计算基因上调下调数量

## 不同的阈值,筛选到的差异基因数量就不一样,后面的超几何分布检验结果就大相径庭。
logFC_t=1.5
deg$g=ifelse(deg$P.Value>0.05,'stable',
            ifelse( deg$logFC > logFC_t,'UP',
                    ifelse( deg$logFC < -logFC_t,'DOWN','stable') )
)#P>0.05输出stable,其中设定当logFC大于1.5为上调输出'UP',大于-1.5为下调输出'DOWN',,如果都不是则输出'stable',从而增加了一列g,筛选出了上调和下调的基因
table(deg$g)
得出上调41,下调88
head(deg)
deg多了提示基因上下调的一列g
deg$symbol=rownames(deg)
给deg增加一列基因名

3.ID转换

library(ggplot2)
library(clusterProfiler)
library(org.Hs.eg.db)
df <- bitr(unique(deg$symbol), fromType = "SYMBOL",
           toType = c( "ENTREZID"),
           OrgDb = org.Hs.eg.db)
#bitr功能为ID转换,
#bitr(geneID, fromType, toType, OrgDb, drop = TRUE);
#geneid :基因ID输入 ; fromtype : 输入ID型;toType:输出ID型;orgdb :注释数据库)
head(df)
QQ截图20190327194950.jpg
DEG=deg#把deg数据赋值给DEG数据
head(DEG)
得到DEG
DEG=merge(DEG,df,by.y='SYMBOL',by.x='symbol')
#把数据DEG,df通过,DEG的'symbol'列,df的'SYMBOL'列连接在一起,转化ID
head(DEG)
save(DEG,file = 'anno_DEG.Rdata')
DEG

4.得出差异基因

gene_up= DEG[DEG$g == 'UP','ENTREZID'] #选出上调基因ID
gene_down=DEG[DEG$g == 'DOWN','ENTREZID'] #选出下调基因ID
gene_diff=c(gene_up,gene_down)#得出上下调基因ID
gene_all=as.character(DEG[ ,'ENTREZID'] )#得出所有基因ID
data(geneList, package="DOSE")#得出geneList数据
head(geneList)#查看数据
geneList
boxplot(geneList)#画箱线图
boxplot(DEG$logFC)#画箱线图
geneList=DEG$logFC#把DEG数据logFC列值赋值给数据geneList
QQ截图20190327214317.jpg
names(geneList)=DEG$ENTREZID#把ID赋值给geneList数据的名字
得到geneList:ID和表达量的关系
geneList=sort(geneList,decreasing = T)#把数据进行排序
排序之后的geneList

5. KEGG pathway analysis

做KEGG数据集超几何分布检验分析,重点在结果的可视化及生物学意义的理解。

if(T){
  ###   over-representation test
  kk.up <- enrichKEGG(gene         = gene_up,
                      organism     = 'hsa',
                      universe     = gene_all,
                      pvalueCutoff = 0.9,
                      qvalueCutoff =0.9)
  head(kk.up)[,1:6]
  dotplot(kk.up );ggsave('kk.up.dotplot.png')
  kk.down <- enrichKEGG(gene         =  gene_down,
                        organism     = 'hsa',
                        universe     = gene_all,
                        pvalueCutoff = 0.9,
                        qvalueCutoff =0.9)
  head(kk.down)[,1:6]
  dotplot(kk.down );ggsave('kk.down.dotplot.png')
  kk.diff <- enrichKEGG(gene         = gene_diff,
                        organism     = 'hsa',
                        pvalueCutoff = 0.05)
  head(kk.diff)[,1:6]
  dotplot(kk.diff );ggsave('kk.diff.dotplot.png')
  
  kegg_diff_dt <- as.data.frame(kk.diff)
  kegg_down_dt <- as.data.frame(kk.down)
  kegg_up_dt <- as.data.frame(kk.up)
  down_kegg<-kegg_down_dt[kegg_down_dt$pvalue<0.05,];down_kegg$group=-1
  up_kegg<-kegg_up_dt[kegg_up_dt$pvalue<0.05,];up_kegg$group=1
  source('functions.R')
  g_kegg=kegg_plot(up_kegg,down_kegg)
  print(g_kegg)
  
  ggsave(g_kegg,filename = 'kegg_up_down.png')

6. GSEA

  kk_gse <- gseKEGG(geneList     = geneList,
                    organism     = 'hsa',
                    nPerm        = 1000,
                    minGSSize    = 120,
                    pvalueCutoff = 0.9,
                    verbose      = FALSE)
  head(kk_gse)[,1:6]
  gseaplot(kk_gse, geneSetID = rownames(kk_gse[1,]))
  
  down_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
  up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1
  
  g_kegg=kegg_plot(up_kegg,down_kegg)
  print(g_kegg)
  ggsave(g_kegg,filename = 'kegg_up_down_gsea.png')
  
  
}

7.GO database analysis

做GO数据集超几何分布检验分析,重点在结果的可视化及生物学意义的理解。

{
  
  g_list=list(gene_up=gene_up,
              gene_down=gene_down,
              gene_diff=gene_diff)
  
  if(F){
    go_enrich_results <- lapply( g_list , function(gene) {
      lapply( c('BP','MF','CC') , function(ont) {
        cat(paste('Now process ',ont ))
        ego <- enrichGO(gene          = gene,
                        universe      = gene_all,
                        OrgDb         = org.Hs.eg.db,
                        ont           = ont ,
                        pAdjustMethod = "BH",
                        pvalueCutoff  = 0.99,
                        qvalueCutoff  = 0.99,
                        readable      = TRUE)
        
        print( head(ego) )
        return(ego)
      })
    })
    save(go_enrich_results,file = 'go_enrich_results.Rdata')
    
  }
  
  
  load(file = 'go_enrich_results.Rdata')
  
  n1= c('gene_up','gene_down','gene_diff')
  n2= c('BP','MF','CC') 
  for (i in 1:3){
    for (j in 1:3){
      fn=paste0('dotplot_',n1[i],'_',n2[j],'.png')
      cat(paste0(fn,'\n'))
      png(fn,res=150,width = 1080)
      print( dotplot(go_enrich_results[[i]][[j]] ))
      dev.off()
    }
  }
  
  
}

把之前的数据设置好之后,后面的富集分析也是傻瓜式的

最后

感谢jimmy的生信技能树团队!

感谢导师岑洪老师!

感谢健明、孙小洁,慧美等生信技能树团队的老师一路以来的指导和鼓励!

特别注明:此文中编码来自生信技能树健明老师

上一篇下一篇

猜你喜欢

热点阅读