Hive自定义函数

2019-01-07  本文已影响0人  小月半会飞

一、hive为我们提供的函数

hive给我们提供了一些内置函数,比如截取字符串,大小写转换
此处距离substr

1、首先模仿sql建立一个伪表dual

create table dual(id string);

2、准备数据

在本地创建一个文档,dual.txt,内容为一个空格或者空行

3、加载数据到表格

load data local inpath '/root/dual.txt' into table dual;

4、进行测试

0: jdbc:hive2://localhost:10000> select substr('sichuan',1,3) from dual;

5、也可以不建表直接使用:

select substr('sichuan',1,3);

二、自定义函数

1、添加maven依赖

<dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-exec</artifactId>
      <version>1.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore -->
    <dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-metastore</artifactId>
      <version>1.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-common -->
    <dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-common</artifactId>
      <version>1.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-service -->
    <dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-service</artifactId>
      <version>1.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
    <dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-jdbc</artifactId>
      <version>1.2.1</version>
    </dependency>

2、大写转小写

1)、创建UpperToLowerCase类,继承UDF,重写evaluate方法
public class UpperToLowerCase extends UDF {
    /*
     * 重载evaluate
     * 访问限制必须是public
     */
    public String evaluate(String word) {
        String lowerWord = word.toLowerCase();
        return lowerWord;
    }
}
2)、打包上传到hadoop集群上

此处我的项目名称是hive

3)、将jar包放到hive的classpath下
0: jdbc:hive2://localhost:10000> add jar /root/hive.jar;
4)、创建临时函数,指定完整类名

完整类名:包名加类名

0: jdbc:hive2://localhost:10000> create temporary function tolower as 'com.neusoft.hive.UpperToLowerCase';
5)、使用临时函数
select tolower('HELLO');

3、根据电话号码显示归属地信息

1)、创建工具类
public class PhoneNumParse extends UDF{

    static HashMap<String, String> phoneMap = new HashMap<String, String>();

    static{
        phoneMap.put("136", "beijing");
        phoneMap.put("137", "shanghai");
        phoneMap.put("138", "shenzhen");
    }

    public static String evaluate(int phoneNum) {

        String num = String.valueOf(phoneNum);
        String province = phoneMap.get(num.substring(0, 3));
        return province==null?"foreign":province;
    }
    //测试
    public static void main(String[] args) {
        String string = evaluate(136666);
        System.out.println(string);
    }
}
2)、重新打jar包,然后上传到hadoop集群上

此处我的项目名称是hive

3)、将jar包放到hive的classpath下
0: jdbc:hive2://localhost:10000> add jar /root/hive.jar;
4)、创建临时函数,指定完整类名

完整类名:包名加类名

create temporary function getprovince as 'com.scu.hive.PhoneNumParse';
5)、创建本地数据

创建flow.txt将以下数据

[root@mini1 ~]# vi flow.txt;
1367788,1
1367788,10
1377788,80
1377788,97
1387788,98
1387788,99
1387788,100
1555118,99
6)、创建表,然后加载数据
0: jdbc:hive2://localhost:10000> create table flow(phonenum int,flow int)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
No rows affected (0.143 seconds)
0: jdbc:hive2://localhost:10000> load data local inpath '/root/flow.txt' into table flow;
7)、查询结果
0: jdbc:hive2://localhost:10000> select phonenum,getprovince(phonenum),flow from flow;
+-----------+-----------+-------+--+
| phonenum  |    _c1    | flow  |
+-----------+-----------+-------+--+
| 1367788   | beijing   | 1     |
| 1367788   | beijing   | 10    |
| 1377788   | shanghai  | 80    |
| 1377788   | shanghai  | 97    |
| 1387788   | shenzhen  | 98    |
| 1387788   | shenzhen  | 99    |
| 1387788   | shenzhen  | 100   |
| 1555118   | foreign   | 99    |
+-----------+-----------+-------+--+

3、Json数据解析UDF开发

1)、创建数据源文本

内容如下,记住不要有空行以及多余的空格,不然会出现解析错误

{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}
{"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"}
{"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"}
{"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"}
{"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"}
{"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"}
2)、创建表,然后上传数据

创建表:

create table json(line string);

上传数据:

load data local inpath ‘/root/json.txt’ into table json;
2)、与json数据对应的javabean
public class MovieRateBean {
    private String movie;
    private String rate;//评分
    private String timeStamp;
    private String uid;
    @Override
    public String toString() {
        return  this.movie+"\t"+this.rate+"\t"+this.timeStamp+"\t"+this.uid;
    }
  //  get、set方法
}
3)、java工具类
package com.neusoft.hive;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import org.apache.hadoop.hive.ql.exec.UDF;

public class JsonParse extends UDF {
    public String evaluate(String jsonStr){
        MovieRateBean movieRateBean=JSON.parseObject(jsonStr,new TypeReference<MovieRateBean>(){});
        returnmovieRateBean.toString();
    }
}
4)、打jar包然后上传到hadoop集群
5)、将jar包添加到hive下的classpath
0: jdbc:hive2://localhost:10000> add jar /root/hive.jar;
5)、将fastjson的jar包添加到hive下的classpath
0: jdbc:hive2://localhost:10000> add jar /root/fastjson-1.1.41.jar;
6)、创建临时函数:

指定类名一定要完整的路径,即包名加类名

0: jdbc:hive2://localhost:10000> create temporary function parsejson as 'com.sneusoft.hive.JsonParse';
7)、执行查询
0: jdbc:hive2://localhost:10000> select parsejson(line) from json limit 10;
+---------------------+--+
|         _c0         |
+---------------------+--+
| 1193  5       978300760       1  |
| 661   3       978302109       1   |
| 914   3       978301968       1   |
| 3408  4       978300275       1  |
| 2355  5       978824291       1  |
| 1197  3       978302268       1  |
| 1287  5       978302039       1  |
| 2804  5       978300719       1  |
| 594   4       978302268       1   |
| 919   4       978301368       1   |
8)、显示字段名

从上面的结果可以看出来,数据虽然分开了,但是没有字段名,现在我们通过建表来实现显示字段名

0: jdbc:hive2://localhost:10000> create table movie as
0: jdbc:hive2://localhost:10000> select split(parsejson(line),'\t')[0]as movieid,
0: jdbc:hive2://localhost:10000> split(parsejson(line),'\t')[1] as rate,
0: jdbc:hive2://localhost:10000> split(parsejson(line),'\t')[2] as timestring,
0: jdbc:hive2://localhost:10000> split(parsejson(line),'\t')[3] as uid 
0: jdbc:hive2://localhost:10000> from json;

再次执行查询,查看结果:

0: jdbc:hive2://localhost:10000> select * from movie;
+-------------------+----------------+----------------------+---------------+--+
| t_rating.movieid  | t_rating.rate  | t_rating.timestring  | t_rating.uid  |
+-------------------+----------------+----------------------+---------------+--+
| 919               | 4              | 978301368            | 1             |
| 594               | 4              | 978302268            | 1             |
| 2804              | 5              | 978300719            | 1             |
| 1287              | 5              | 978302039            | 1             |
| 1197              | 3              | 978302268            | 1             |
| 2355              | 5              | 978824291            | 1             |
| 3408              | 4              | 978300275            | 1             |
| 914               | 3              | 978301968            | 1             |
| 661               | 3              | 978302109            | 1             |
| 1193              | 5              | 978300760            | 1             |
+-------------------+----------------+----------------------+---------------+--+

三、transform关键字的使用

将某一个字段时间戳要改为输出周几,可以不用实现UDF
我们直接使用跟上面创建好的表,将第三个字段改为时间

1、编写python脚本

在本地创建一个Python脚本,名字叫做trans.py

vi trans.py

以下是脚本代码

import sys
import datetime

for line in sys.stdin:
  line = line.strip()
  movieid, rating, unixtime,userid = line.split('\t')
  weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
  print '\t'.join([movieid, rating, str(weekday),userid])

2、使用该脚本

1)、添加该文本到hive
0: jdbc:hive2://localhost:10000> add FILE /root/trans.py;
2)、使用该脚本
0: jdbc:hive2://localhost:10000> select TRANSFORM(movieid,rate,time,userid) USING 'python trans.py' as (mov,rat,tim,uid) from movie;

输出结果:

INFO  : Number of reduce tasks is set to 0 since there's no reduce operator
INFO  : number of splits:1
INFO  : Submitting tokens for job: job_1546821616463_0002
INFO  : The url to track the job: http://hadoop4:8088/proxy/application_1546821616463_0002/
INFO  : Starting Job = job_1546821616463_0002, Tracking URL = http://hadoop4:8088/proxy/application_1546821616463_0002/
INFO  : Kill Command = /opt/modules/app/hadoop/bin/hadoop job  -kill job_1546821616463_0002
INFO  : Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
INFO  : 2019-01-05 00:35:37,847 Stage-1 map = 0%,  reduce = 0%
INFO  : 2019-01-05 00:35:56,316 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.55 sec
INFO  : MapReduce Total cumulative CPU time: 1 seconds 550 msec
INFO  : Ended Job = job_1546821616463_0002
+-------+------+------+------+--+
|  mov  | rat  | tim  | uid  |
+-------+------+------+------+--+
| 1197  | 3    | 1    | 1    |
| 2355  | 5    | 7    | 1    |
| 3408  | 4    | 1    | 1    |
| 914   | 3    | 1    | 1    |
| 661   | 3    | 1    | 1    |
| 1193  | 5    | 1    | 1    |
+-------+------+------+------+--+
6 rows selected (36.201 seconds)

上一篇下一篇

猜你喜欢

热点阅读