生物信息学与算法诗翔的R语言学习之路数据科学与R语言

「r<-dplyr」数据汇总时自动生成多列

2019-12-10  本文已影响0人  王诗翔

今天在使用dplyr数据分析时遇到一个问题,就是如何在分组汇总时自动生成多列。

下面的代码和数据源主要来自:https://stackoverflow.com/questions/51063842/create-multiple-columns-in-summarize,以计算分位数为例。

> library(dplyr)
> library(tidyr)
> 
> Z <- data.frame(x = runif(1000, min = 0, max = 20)) %>%
+     mutate(y = rnorm(n(), mean = sin(x))) %>%
+     group_by(x.category = round(x)) 
> Z
# A tibble: 1,000 x 3
# Groups:   x.category [21]
        x       y x.category
    <dbl>   <dbl>      <dbl>
 1  0.670  0.121           1
 2 16.5    0.0702         16
 3 15.0   -1.47           15
 4  3.16  -0.595           3
 5 12.7   -0.915          13
 6  5.25  -0.540           5
 7  3.82  -0.671           4
 8 10.6   -2.33           11
 9 18.3    1.15           18
10  1.53   0.205           2
# … with 990 more rows

解法一

首先生成想要计算的分位数,然后再summarize()中用list()将结果包起来。这个办法的聪明之处在于解决了汇总时每个分组只能返回一个值的问题。

> probs <- c(0.25, 0.5, 0.75)
> 
> Z %>%
+     summarize(x = mean(x),
+               quantile = list(quantile(y, probs)),
+               prob = list(probs)) %>%
+     unnest(cols = c("quantile", "prob")) 
# A tibble: 63 x 4
   x.category     x quantile  prob
        <dbl> <dbl>    <dbl> <dbl>
 1          0 0.162    0.120  0.25
 2          0 0.162    0.576  0.5 
 3          0 0.162    0.954  0.75
 4          1 1.00     0.119  0.25
 5          1 1.00     0.818  0.5 
 6          1 1.00     1.51   0.75
 7          2 2.02     0.119  0.25
 8          2 2.02     0.556  0.5 
 9          2 2.02     1.38   0.75
10          3 2.89    -0.418  0.25
# … with 53 more rows

去掉 unnest() 部分我们就可以看到精妙之处。

> Z %>%
+     summarize(x = mean(x),
+               quantile = list(quantile(y, probs)),
+               prob = list(probs))
# A tibble: 21 x 4
   x.category     x quantile  prob     
        <dbl> <dbl> <list>    <list>   
 1          0 0.162 <dbl [3]> <dbl [3]>
 2          1 1.00  <dbl [3]> <dbl [3]>
 3          2 2.02  <dbl [3]> <dbl [3]>
 4          3 2.89  <dbl [3]> <dbl [3]>
 5          4 3.95  <dbl [3]> <dbl [3]>
 6          5 5.00  <dbl [3]> <dbl [3]>
 7          6 5.99  <dbl [3]> <dbl [3]>
 8          7 7.04  <dbl [3]> <dbl [3]>
 9          8 7.98  <dbl [3]> <dbl [3]>
10          9 8.96  <dbl [3]> <dbl [3]>
# … with 11 more rows

只要进一步转换为宽格式就可以完成处理了。

> Z %>%
+   summarize(x = mean(x),
+             quantile = list(quantile(y, probs)),
+             prob = list(probs)) %>%
+   unnest(cols = c("quantile", "prob")) %>% 
+   pivot_wider(names_from = "prob", values_from = "quantile")
# A tibble: 21 x 5
   x.category     x `0.25`   `0.5`  `0.75`
        <dbl> <dbl>  <dbl>   <dbl>   <dbl>
 1          0 0.162  0.120  0.576   0.954 
 2          1 1.00   0.119  0.818   1.51  
 3          2 2.02   0.119  0.556   1.38  
 4          3 2.89  -0.418  0.0492  1.01  
 5          4 3.95  -1.48  -1.16   -0.363 
 6          5 5.00  -1.26  -0.591  -0.0489
 7          6 5.99  -1.19  -0.644   0.128 
 8          7 7.04  -0.111  0.494   1.19  
 9          8 7.98   0.302  1.10    1.70  
10          9 8.96  -0.161  0.730   1.32  
# … with 11 more rows

解法二

还有一种解法也非常巧妙,利用逗号分隔符先将结果拼起来。

> q = c(0.25, 0.5, 0.75)
> Z %>%
+     summarise(x = mean(x),
+               qtls = paste(quantile(y, q), collapse = ","))
# A tibble: 21 x 3
   x.category     x qtls                                                    
        <dbl> <dbl> <chr>                                                   
 1          0 0.162 0.120072116112535,0.575978614296194,0.95448088936774    
 2          1 1.00  0.119032678946747,0.817605136591999,1.51100977230941    
 3          2 2.02  0.118974463754045,0.55558427752219,1.37673188157502     
 4          3 2.89  -0.417873321719452,0.0491691391974207,1.01255080037855  
 5          4 3.95  -1.4814206722814,-1.16393051974191,-0.363080292142612   
 6          5 5.00  -1.26150842194084,-0.590699875806735,-0.0489240190965984
 7          6 5.99  -1.19467973679591,-0.644474146111019,0.127766424109508  
 8          7 7.04  -0.111463505167144,0.494006133975402,1.18883677903866   
 9          8 7.98  0.301653284838848,1.0991386822569,1.70216573511269      
10          9 8.96  -0.16083962000444,0.729929510376446,1.32344915438963    
# … with 11 more rows

然后进一步使用 seperate() 函数解包:

> Z %>%
+     summarise(x = mean(x),
+               qtls = paste(quantile(y, q), collapse = ",")) %>%   # get quantile values as a string
+     separate(qtls, paste0("y_", 100*q), sep = ",", convert = T)   # separate quantile values and give corresponding names to columns
# A tibble: 21 x 5
   x.category     x   y_25    y_50    y_75
        <dbl> <dbl>  <dbl>   <dbl>   <dbl>
 1          0 0.162  0.120  0.576   0.954 
 2          1 1.00   0.119  0.818   1.51  
 3          2 2.02   0.119  0.556   1.38  
 4          3 2.89  -0.418  0.0492  1.01  
 5          4 3.95  -1.48  -1.16   -0.363 
 6          5 5.00  -1.26  -0.591  -0.0489
 7          6 5.99  -1.19  -0.644   0.128 
 8          7 7.04  -0.111  0.494   1.19  
 9          8 7.98   0.302  1.10    1.70  
10          9 8.96  -0.161  0.730   1.32  
# … with 11 more rows

这个解法在命名上看起来更有优势。

参考:https://stackoverflow.com/questions/51063842/create-multiple-columns-in-summarize

上一篇下一篇

猜你喜欢

热点阅读