一文搞懂 Flink Kafka Consumer 类两阶段提交
2020-08-07 本文已影响0人
shengjk1
由 一文搞懂 checkpoint 全过程,我们可以知道当 executeCheckpointing 的时候会执行 AsyncCheckpointRunnable
@Override
public void run() {
......
reportCompletedSnapshotStates(
jobManagerTaskOperatorSubtaskStates,
localTaskOperatorSubtaskStates,
asyncDurationMillis);
......
}
reportCompletedSnapshotStates 最终会通过 taskStateManager.reportTaskStateSnapshots 一层层的报告给 jobMaster 的 acknowledgeCheckpoint
// ack checkpoint 说是 JobManager 确认 checkpoint 实际上还是调用了 checkpointCoordinator.receiveAcknowledgeMessage(ackMessage);
// 待所有的 ack task 执行完成,才会 notifyCHeckpointComplete 这也算是两阶段提交
public void acknowledgeCheckpoint(
final JobID jobID,
final ExecutionAttemptID executionAttemptID,
final long checkpointId,
final CheckpointMetrics checkpointMetrics,
final TaskStateSnapshot checkpointState) {
final CheckpointCoordinator checkpointCoordinator = executionGraph.getCheckpointCoordinator();
final AcknowledgeCheckpoint ackMessage = new AcknowledgeCheckpoint(
jobID,
executionAttemptID,
checkpointId,
checkpointMetrics,
checkpointState);
if (checkpointCoordinator != null) {
getRpcService().execute(() -> {
try {
checkpointCoordinator.receiveAcknowledgeMessage(ackMessage);
} catch (Throwable t) {
log.warn("Error while processing checkpoint acknowledgement message", t);
}
});
......
}
最终调用的是 checkpointCoordinator.receiveAcknowledgeMessage 方法
public boolean receiveAcknowledgeMessage(AcknowledgeCheckpoint message) throws CheckpointException {
......
synchronized (lock) {
// we need to check inside the lock for being shutdown as well, otherwise we
// get races and invalid error log messages
if (shutdown) {
return false;
}
final PendingCheckpoint checkpoint = pendingCheckpoints.get(checkpointId);
if (checkpoint != null && !checkpoint.isDiscarded()) {
// 待所有的 ack task 执行完成,才会 notifyCheckpointComplete 这也算是两阶段提交
// flink task 是横向的,即每个 operator chain 的所有 subTask 都 acknowCheckpoint, 这个 operator chain 才会进行 notifyCheckpointComplete
switch (checkpoint.acknowledgeTask(message.getTaskExecutionId(), message.getSubtaskState(), message.getCheckpointMetrics())) {
case SUCCESS:
LOG.debug("Received acknowledge message for checkpoint {} from task {} of job {}.",
checkpointId, message.getTaskExecutionId(), message.getJob());
// 待所有的 tasks 都 ack 时,completePendingCheckpoint
if (checkpoint.isFullyAcknowledged()) {
completePendingCheckpoint(checkpoint);
}
break;
case DUPLICATE:
LOG.debug("Received a duplicate acknowledge message for checkpoint {}, task {}, job {}.",
message.getCheckpointId(), message.getTaskExecutionId(), message.getJob());
break;
case UNKNOWN:
LOG.warn("Could not acknowledge the checkpoint {} for task {} of job {}, " +
"because the task's execution attempt id was unknown. Discarding " +
"the state handle to avoid lingering state.", message.getCheckpointId(),
message.getTaskExecutionId(), message.getJob());
discardSubtaskState(message.getJob(), message.getTaskExecutionId(), message.getCheckpointId(), message.getSubtaskState());
break;
case DISCARDED:
LOG.warn("Could not acknowledge the checkpoint {} for task {} of job {}, " +
"because the pending checkpoint had been discarded. Discarding the " +
"state handle tp avoid lingering state.",
message.getCheckpointId(), message.getTaskExecutionId(), message.getJob());
discardSubtaskState(message.getJob(), message.getTaskExecutionId(), message.getCheckpointId(), message.getSubtaskState());
}
return true;
......
关键是 checkpoint.acknowledgeTask 以及 checkpoint.isFullyAcknowledged() 方法。当每次调用 checkpoint.acknowledgeTask 方法时
//将本次 ack 的 task 从 notYetAcknowledgedTasks 中移除
final ExecutionVertex vertex = notYetAcknowledgedTasks.remove(executionAttemptId);
将该 executionAttemptId( 也就是 subTask id ) 从 notYetAcknowledgedTasks 中移除,而当 notYetAcknowledgedTasks 为 empty ,即全部确认,即 checkpoint.isFullyAcknowledged()==true, 进行 notifyCheckpointComplete。具体时间如何 notifyCheckpointComplete 的可以参考 一文搞懂 checkpoint 全过程