大数据玩转大数据大数据 爬虫Python AI Sql

Hive解析嵌套结构的json字符串,并去重

2018-09-27  本文已影响4人  9c0ddf06559c

输入的abtest如下

{"trip_ab_deal_packagerankst":"B",
 "trip_ab_poivideo":"C",
 "trip_ab_group_fengchao_zhinan":"A",
 "trip_ab_BookingProduct":"A",
 "trip_ab_OptimalGoods_2018":"B",
 "trip_ab_poitoubuyouhua":"B",
  "trip_ab_group_fengchao":{"trip_ab_group_fengchao_zhinan":"A"},
  "trip_ab_group_BookingProduct":{"trip_ab_BookingProduct":"A"},
  "trip_ab_group_common":{"trip_ab_poivideo":"C"},
  "trip_ab_group_common":{"trip_ab_poitoubuyouhua":"B"},
  "trip_ab_group_common":{"trip_ab_deal_packagerankst":"B"},
   "trip_ab_group_OptimalGoods_2018":{"trip_ab_OptimalGoods_2018":"B"}}

要求输出如下

trip_ab_deal_packagerankst:B,trip_ab_poivideo:C,trip_ab_group_fengchao_zhinan:A,trip_ab_BookingProduct:A,trip_ab_OptimalGoods_2018:B,trip_ab_poitoubuyouhua:B
  1. 将abtest的json字符串按照,打平
lateral view explode(split(abtest,',')) b as f2
  1. 将打平后的每个值按照正则表达式解析出"":""格式的数据,并去掉双引号
regexp_replace(
  // 正则表达式编写思路:
  // 要解析"":""格式的数据:(".*":".*")
  // 因为一行可能有多对键值对,所以需要非贪婪匹配:(".*":".*?")
  // 因为有"trip_ab_group_OptimalGoods_2018":{"trip_ab_OptimalGoods_2018":"B"}}这种数据,
  // 我们实际要解析的是"trip_ab_OptimalGoods_2018":"B",所以需要做兼容:("[^"]*"\:".*?")
  regexp_extract(f2,'("[^"]*"\:".*?")',0),  
 '"','')
  1. 使用窗口函数再将这些值使用窗口函数聚合到一起,按照,拼接
concat_ws(',',collect_set(regexp_replace(regexp_extract(f2,'("[^"]*"\:".*?")',0),'"','')))
hive> select concat_ws(',',collect_set(regexp_replace(regexp_extract(f2,'("[^"]*"\:".*?")',0),'"','')))
    >   from (
    >         select 1 as rk,
    >                '{"trip_ab_deal_packagerankst":"B","trip_ab_poivideo":"C","trip_ab_group_fengchao_zhinan":"A","trip_ab_BookingProduct":"A","trip_ab_OptimalGoods_2018":"B","trip_ab_poitoubuyouhua":"B","trip_ab_group_fengchao":{"trip_ab_group_fengchao_zhinan":"A"},"trip_ab_group_BookingProduct":{"trip_ab_BookingProduct":"A"},"trip_ab_group_common":{"trip_ab_poivideo":"C"},"trip_ab_group_common":{"trip_ab_poitoubuyouhua":"B"},"trip_ab_group_common":{"trip_ab_deal_packagerankst":"B"},"trip_ab_group_OptimalGoods_2018":{"trip_ab_OptimalGoods_2018":"B"}}' as abtest
    >        ) a  lateral view explode(split(abtest,',')) b as f2
    > GROUP BY  a.rk;
Query ID = gaowenfeng_20180927192959_991bcfd6-ead7-4ca6-a7b0-c542828f2d0e
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1537411935549_0008, Tracking URL = http://gaowenfengdeMacBook-Pro.local:8088/proxy/application_1537411935549_0008/
Kill Command = /Users/gaowenfeng/software/hadoop-2.6.0-cdh5.7.0/bin/hadoop job  -kill job_1537411935549_0008
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-09-27 19:30:04,677 Stage-1 map = 0%,  reduce = 0%
2018-09-27 19:30:08,794 Stage-1 map = 100%,  reduce = 0%
2018-09-27 19:30:14,951 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_1537411935549_0008
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1  Reduce: 1   HDFS Read: 12371 HDFS Write: 158 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
trip_ab_deal_packagerankst:B,trip_ab_poivideo:C,trip_ab_group_fengchao_zhinan:A,trip_ab_BookingProduct:A,trip_ab_OptimalGoods_2018:B,trip_ab_poitoubuyouhua:B
Time taken: 16.953 seconds, Fetched: 1 row(s)
hive>
select a.event_identifier,
       concat_ws(',',collect_set(regexp_replace(regexp_extract(f2,'("[^"]*"\:".*?")',0),'"',''))),
       MAX(abtest)
  from our_table a lateral view explode(split(abtest,',')) b as f2
  WHERE a.datekey = 20180926
  GROUP BY a.event_identifier
 LIMIT 100
上一篇 下一篇

猜你喜欢

热点阅读