【算法】Super Egg Drop 鸡蛋掉落
题目
You are given K eggs, and you have access to a building with N floors from 1 to N.
Each egg is identical in function, and if an egg breaks, you cannot drop it again.
You know that there exists a floor F with 0 <= F <= N such that any egg dropped at a floor higher than F will break, and any egg dropped at or below floor F will not break.
Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X (with 1 <= X <= N).
Your goal is to know with certainty what the value of F is.
What is the minimum number of moves that you need to know with certainty what F is, regardless of the initial value of F?
Example 1:
Input: K = 1, N = 2
Output: 2
Explanation:
Drop the egg from floor 1. If it breaks, we know with certainty that F = 0.
Otherwise, drop the egg from floor 2. If it breaks, we know with certainty that F = 1.
If it didn't break, then we know with certainty F = 2.
Hence, we needed 2 moves in the worst case to know what F is with certainty.
Example 2:
Input: K = 2, N = 6
Output: 3
Example 3:
Input: K = 3, N = 14
Output: 4
Note:
1 <= K <= 100
1 <= N <= 10000
给 K 个鸡蛋,一个 N 层的建筑,一定有个 F 层,使得在小于等于 F 层扔鸡蛋不会破碎,而在大于 F 层扔鸡蛋会破碎。求找到 F 层至少需要多少步。
解题思路
这个题意开始看的时候,"至少"(“minimum”)真的是看得我一头雾水,总觉得“至少”就是两步,导致好久没有转过来弯。
其实,所谓的”至少“是说,在最坏情况下,找到 F 值所需要走的最少步数,这样就可以覆盖比最坏情况稍微好的情况。
即是说,至少需要多少步,才能确认所有楼层 N ,以确保一定能找到 F 。
这里可以考虑用动态规划, dp[moves][k] 表示 k 个鸡蛋走 moves 步可以确认的楼层数。
假设第一步在 X 层,丢鸡蛋会有两个结果:
- 鸡蛋碎了,则还剩下 k-1 个鸡蛋和 moves-1 步,剩余可确认的层数即 dp[moves - 1][k - 1]
- 鸡蛋没碎,则还剩下 k 个鸡蛋和 moves-1 步,剩余可确认的层数即 dp[moves - 1][k]
再加上第一步锁确认的 X 层这 1 层,可得 dp[moves][k] = dp[moves - 1][k - 1] + dp[moves - 1][k] + 1
起始值,当有 0 个鸡蛋(k=0)或者走 0 步(moves=0)时,dp[moves][k] 的值为 0 ,为计算方便, dp 声明时所有的值均为 0 即可。
代码实现
Runtime: 12 ms
Memory: 20.5 MB
func superEggDrop(_ K: Int, _ N: Int) -> Int {
//dp[moves][K] 表示 K 个鸡蛋走 moves 步可以确认的楼层数 初始值为0
var dp:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:K + 1),count:N + 1)
var moves = 0
//当 dp[moves][K] 的值等于 N 的时候,即找到了符合要求的 moves
while(dp[moves][K] < N)
{
//moves +1 并遍历 1~K 来计算 dp[moves][k] 的值
moves += 1
for k in 1...K
{
//计算 dp[moves][k] 的值
//假设第一步在 X 层,丢鸡蛋会有两个结果:
// 1. 鸡蛋碎了,则还剩下 k-1 个鸡蛋和 moves-1 步,剩余可确认的层数即 dp[moves - 1][k - 1]
// 2. 鸡蛋没碎,则还剩下 k 个鸡蛋和 moves-1 步,剩余可确认的层数即 dp[moves - 1][k]
//所以 dp[moves][k] = dp[moves - 1][k - 1] + dp[moves - 1][k] + 1,加值 1 为第一步确认的 X 层
dp[moves][k] = dp[moves - 1][k - 1] + dp[moves - 1][k] + 1
}
}
//找到 moves 后返回结果
return moves
}