R语言R语言训练生信小白

R for data science ||使用readr进行数据

2019-07-19  本文已影响11人  周运来就是我

使用R包提供的数据是学习数据科学工具的好方法,但是在某个时候,您希望停止学习,开始使用自己的数据。在本章中,您将学习如何将纯文本矩形文件读入r。在这里,我们只讨论数据导入的皮毛,但是许多原则将转换为其他形式的数据。

library(tidyverse)
setwd("D:\\Users\\Administrator\\Desktop\\RStudio\\R-Programming")
heights <- read_csv("heights.csv")

Parsed with column specification:
cols(
  earn = col_double(),
  height = col_double(),
  sex = col_character(),
  ed = col_double(),
  age = col_double(),
  race = col_character()
)

?read_csv()
? read_csv2()
? read_tsv()
? read_delim()
?read_fwf()
?read_log()

直接创建行内csv文件。

read_csv("a,b,c
          1,2,3
         4,5,6")


# A tibble: 2 x 3
      a     b     c
  <dbl> <dbl> <dbl>
1     1     2     3
2     4     5     6

用skip=n来跳过前n行。

read_csv("The first line of metadata
  The second line of metadata
         x,y,z
         1,2,3", skip = 2)

# A tibble: 1 x 3
      x     y     z
  <dbl> <dbl> <dbl>
1     1     2     3

read_csv("# A comment I want to skip
  x,y,z
  1,2,3", comment = "#")

# A tibble: 1 x 3
      x     y     z
  <dbl> <dbl> <dbl>
1     1     2     3

无列名

read_csv("1,2,3\n4,5,6", col_names = FALSE)

# A tibble: 2 x 3
     X1    X2    X3
  <dbl> <dbl> <dbl>
1     1     2     3
2     4     5     6
read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
# A tibble: 2 x 3
      x     y     z
  <dbl> <dbl> <dbl>
1     1     2     3
2     4     5     6
与R基础包进行比较
解析向量
str(parse_logical(c("TRUE", "FALSE", "NA")))
#>  logi [1:3] TRUE FALSE NA
str(parse_integer(c("1", "2", "3")))
#>  int [1:3] 1 2 3
str(parse_date(c("2010-01-01", "1979-10-14")))
#>  Date[1:2], format: "2010-01-01" "1979-10-14"


str(parse_integer(c("1", "2", "a")))
Warning: 1 parsing failure.
row col   expected actual
  3  -- an integer      a

 int [1:3] 1 2 NA
 - attr(*, "problems")=Classes ‘tbl_df’, ‘tbl’ and 'data.frame':    1 obs. of  4 variables:
  ..$ row     : int 3
  ..$ col     : int NA
  ..$ expected: chr "an integer"
  ..$ actual  : chr "a"

数值

parse_double("1.23")
#> [1] 1.23
parse_double("1,23", locale = locale(decimal_mark = ","))
#> [1] 1.23

parse_number("$100")
#> [1] 100
parse_number("20%")
#> [1] 20
parse_number("It cost $123.45")
#> [1] 123


# Used in America
parse_number("$123,456,789")
#> [1] 1.23e+08

# Used in many parts of Europe
parse_number("123.456.789", locale = locale(grouping_mark = "."))
#> [1] 1.23e+08

# Used in Switzerland
parse_number("123'456'789", locale = locale(grouping_mark = "'"))
#> [1] 1.23e+08

字符串

#In R, we can get at the underlying representation of a string using charToRaw():

charToRaw("Hadley")
#> [1] 48 61 64 6c 65 79

x1 <- "El Ni\xf1o was particularly bad this year"
x2 <- "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"

x1
#> [1] "El Ni\xf1o was particularly bad this year"
x2
#> [1] "\x82\xb1\x82\xf1\x82ɂ\xbf\x82\xcd"

parse_character(x1, locale = locale(encoding = "Latin1"))
#> [1] "El Niño was particularly bad this year"
parse_character(x2, locale = locale(encoding = "Shift-JIS"))
#> [1] "こんにちは"
查看编码格式
guess_encoding(charToRaw(x1))
#> # A tibble: 2 x 2
#>   encoding   confidence
#>   <chr>           <dbl>
#> 1 ISO-8859-1       0.46
#> 2 ISO-8859-9       0.23
guess_encoding(charToRaw(x2))
#> # A tibble: 1 x 2
#>   encoding confidence
#>   <chr>         <dbl>
#> 1 KOI8-R         0.42
因子
fruit <- c("apple", "banana")
parse_factor(c("apple", "banana", "bananana"), levels = fruit)
#> Warning: 1 parsing failure.
#> row col           expected   actual
#>   3  -- value in level set bananana
#> [1] apple  banana <NA>  
#> attr(,"problems")
#> # A tibble: 1 x 4
#>     row   col expected           actual  
#>   <int> <int> <chr>              <chr>   
#> 1     3    NA value in level set bananana
#> Levels: apple banana
时间
parse_datetime("2010-10-01T2010")
#> [1] "2010-10-01 20:10:00 UTC"
# If time is omitted, it will be set to midnight
parse_datetime("20101010")
#> [1] "2010-10-10 UTC"

parse_date("2010-10-01")
#> [1] "2010-10-01"

library(hms)
parse_time("01:10 am")
#> 01:10:00
parse_time("20:10:01")
#> 20:10:01

parse_date("01/02/15", "%m/%d/%y")
#> [1] "2015-01-02"
parse_date("01/02/15", "%d/%m/%y")
#> [1] "2015-02-01"
parse_date("01/02/15", "%y/%m/%d")
#> [1] "2001-02-15"

parse_date("1 janvier 2015", "%d %B %Y", locale = locale("fr"))
#> [1] "2015-01-01"
解析文件

既然您已经了解了如何解析单个向量,现在就回到开始部分,研究readr如何解析文件。在本节中,您将了解两个新内容:

启发式

guess_parser("2010-10-01")
#> [1] "date"
guess_parser("15:01")
#> [1] "time"
guess_parser(c("TRUE", "FALSE"))
#> [1] "logical"
guess_parser(c("1", "5", "9"))
#> [1] "double"
guess_parser(c("12,352,561"))
#> [1] "number"

str(parse_guess("2010-10-10"))
#>  Date[1:1], format: "2010-10-10"
challenge <- read_csv(readr_example("challenge.csv"))
Parsed with column specification:
cols(
  x = col_double(),
  y = col_logical()
)
Warning: 1000 parsing failures.
 row col           expected     actual                                             file
1001   y 1/0/T/F/TRUE/FALSE 2015-01-16 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1002   y 1/0/T/F/TRUE/FALSE 2018-05-18 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1003   y 1/0/T/F/TRUE/FALSE 2015-09-05 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1004   y 1/0/T/F/TRUE/FALSE 2012-11-28 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1005   y 1/0/T/F/TRUE/FALSE 2020-01-13 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
.... ... .................. .......... ................................................
See problems(...) for more details.

有两个打印输出:查看前1000行生成的列规范和前5个解析失败。显式地找出问题()总是一个好主意,这样您就可以更深入地研究它们:

 problems(challenge)
# A tibble: 1,000 x 5
     row col   expected           actual     file                                            
   <int> <chr> <chr>              <chr>      <chr>                                           
 1  1001 y     1/0/T/F/TRUE/FALSE 2015-01-16 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 2  1002 y     1/0/T/F/TRUE/FALSE 2018-05-18 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 3  1003 y     1/0/T/F/TRUE/FALSE 2015-09-05 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 4  1004 y     1/0/T/F/TRUE/FALSE 2012-11-28 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 5  1005 y     1/0/T/F/TRUE/FALSE 2020-01-13 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 6  1006 y     1/0/T/F/TRUE/FALSE 2016-04-17 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 7  1007 y     1/0/T/F/TRUE/FALSE 2011-05-14 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 8  1008 y     1/0/T/F/TRUE/FALSE 2020-07-18 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
 9  1009 y     1/0/T/F/TRUE/FALSE 2011-04-30 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
10  1010 y     1/0/T/F/TRUE/FALSE 2010-05-11 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
# ... with 990 more rows

一个好的策略是逐列工作,直到没有问题为止。这里我们可以看到x列有很多解析问题——整数值后面有尾随字符。这意味着我们需要使用双解析器。

challenge <- read_csv(
  readr_example("challenge.csv"), 
  col_types = cols(
    x = col_integer(),
    y = col_character()
  )
)

Warning: 1000 parsing failures.
 row col               expected             actual                                             file
1001   x no trailing characters .23837975086644292 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1002   x no trailing characters .41167997173033655 'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1003   x no trailing characters .7460716762579978  'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1004   x no trailing characters .723450553836301   'D:/R-3.5.1/library/readr/extdata/challenge.csv'
1005   x no trailing characters .614524137461558   'D:/R-3.5.1/library/readr/extdata/challenge.csv'
.... ... ...................... .................. ................................................
See problems(...) for more details.
challenge <- read_csv(
  readr_example("challenge.csv"), 
  col_types = cols(
    x = col_double(),
    y = col_character()
  )
)

tail(challenge)
# A tibble: 6 x 2
      x y         
  <dbl> <chr>     
1 0.805 2019-11-21
2 0.164 2018-03-29
3 0.472 2014-08-04
4 0.718 2015-08-16
5 0.270 2020-02-04
6 0.608 2019-01-06

challenge <- read_csv(
  readr_example("challenge.csv"), 
  col_types = cols(
    x = col_double(),
    y = col_date()
  )
)
tail(challenge)
#> # A tibble: 6 x 2
#>       x y         
#>   <dbl> <date>    
#> 1 0.805 2019-11-21
#> 2 0.164 2018-03-29
#> 3 0.472 2014-08-04
#> 4 0.718 2015-08-16
#> 5 0.270 2020-02-04
#> 6 0.608 2019-01-06
challenge2 <- read_csv(readr_example("challenge.csv"), guess_max = 1001)
#> Parsed with column specification:
#> cols(
#>   x = col_double(),
#>   y = col_date(format = "")
#> )
challenge2
#> # A tibble: 2,000 x 2
#>       x y         
#>   <dbl> <date>    
#> 1   404 NA        
#> 2  4172 NA        
#> 3  3004 NA        
#> 4   787 NA        
#> 5    37 NA        
#> 6  2332 NA        
#> # … with 1,994 more rows
challenge2 <- read_csv(readr_example("challenge.csv"), 
                       col_types = cols(.default = col_character())
)

challenge2
# A tibble: 2,000 x 2
   x     y    
   <chr> <chr>
 1 404   NA   
 2 4172  NA   
 3 3004  NA   
 4 787   NA   
 5 37    NA   
 6 2332  NA   
 7 2489  NA   
 8 1449  NA   
 9 3665  NA   
10 3863  NA   
# ... with 1,990 more rows

df <- tribble(
  ~x,  ~y,
  "1", "1.21",
  "2", "2.32",
  "3", "4.56"
)
df
#> # A tibble: 3 x 2
#>   x     y    
#>   <chr> <chr>
#> 1 1     1.21 
#> 2 2     2.32 
#> 3 3     4.56

# Note the column types
type_convert(df)
#> Parsed with column specification:
#> cols(
#>   x = col_double(),
#>   y = col_double()
#> )
#> # A tibble: 3 x 2
#>       x     y
#>   <dbl> <dbl>
#> 1     1  1.21
#> 2     2  2.32
#> 3     3  4.56
文件写出

readr还提供了两个将数据写入磁盘的有用函数:write_csv()和write_tsv()。这两个函数都增加了输出文件被正确读入的机会:

write_csv(challenge, "challenge.csv")

challenge
#> # A tibble: 2,000 x 2
#>       x y         
#>   <dbl> <date>    
#> 1   404 NA        
#> 2  4172 NA        
#> 3  3004 NA        
#> 4   787 NA        
#> 5    37 NA        
#> 6  2332 NA        
#> # … with 1,994 more rows
write_csv(challenge, "challenge-2.csv")
read_csv("challenge-2.csv")
#> Parsed with column specification:
#> cols(
#>   x = col_double(),
#>   y = col_logical()
#> )
#> # A tibble: 2,000 x 2
#>       x y    
#>   <dbl> <lgl>
#> 1   404 NA   
#> 2  4172 NA   
#> 3  3004 NA   
#> 4   787 NA   
#> 5    37 NA   
#> 6  2332 NA   
#> # … with 1,994 more rows

write_rds(challenge, "challenge.rds")
read_rds("challenge.rds")
#> # A tibble: 2,000 x 2
#>       x y         
#>   <dbl> <date>    
#> 1   404 NA        
#> 2  4172 NA        
#> 3  3004 NA        
#> 4   787 NA        
#> 5    37 NA        
#> 6  2332 NA        
#> # … with 1,994 more rows

feather包实现了一种快速的二进制文件格式,可以跨编程语言共享:

library(feather)
write_feather(challenge, "challenge.feather")
read_feather("challenge.feather")
#> # A tibble: 2,000 x 2
#>       x      y
#>   <dbl> <date>
#> 1   404   <NA>
#> 2  4172   <NA>
#> 3  3004   <NA>
#> 4   787   <NA>
#> 5    37   <NA>
#> 6  2332   <NA>
#> # ... with 1,994 more rows

r4ds

上一篇下一篇

猜你喜欢

热点阅读