系统架构数据EA专题-DA(数据架构)

数据分析之指标体系

2021-01-14  本文已影响0人  数据追随者

指标体系是数据分析师招聘JD中高频出现的词汇,也是分析师必备的技能,尤其是社招岗位。在数据分析师校招岗位中出现的比例虽然没有社招高,但是也有50%的比例,随着入职后工作的展开,这块也是必须要掌握的技能。
对于产品经理、运营的同学来说,如果想证明自己的数据分析能力,指标体系是一个很重要的点,尤其是在往高阶的产品和运营发展的时候。
本文的主要目的是让读者知道什么是指标体系,以及通过2种不同的方法来搭建指标体系。

本文结构如下:

一. 指标体系概念
二. 指标体系的好处
三. 如何搭建指标体系
四. 一个讨论

一.指标体系概念

从字面上来看,“指标体系”是可以分成“指标”、“体系”两个词语,所以这里我们先看一下什么“指标”?

1、什么指标:

来自百度百科的定义:指标是说明总体数量特征的概念及其数值的综合。
综合数据大V的定义:针对某一具体事物或行为进行量化描述的数值。
上面两个定义可能都不是特别的好理解,看一下下面的3个例子,会更形象一些,9.96亿的GDP,4982亿的GMV,12.13亿的UV,这些就是指标。当别人问一下平时看哪些关键指标时,只要交流具体名称即可。


image

在上面直接讲“9.96亿的GDP,4982亿的GMV,12.13亿的UV”这一串数字的时候,我相信大家一定是有疑问的。这里我们开始引入“维度”概念。

2、什么是维度:

维度是指标的属性或者特征,同时也是指标的必要定语!且看下图,9.96万亿如果加上2019年江苏省这两个属性,是不是就更加明确和有意义了。是的,2019年是时间维度,江苏省地区维度,天猫、微信是平台维度。时间维度从低层到高层包括日、周、月、季度、年度等。地区维度从低层到高层包括区/县、市、省、国家等。当然还可以根据自己业务需要重新定义和划分。


image

下图是电商业务中常见的分析维度


image

3、好的指标:

因为指标是指标体系的关键,有必要强调一下什么是好的指标,为后续建设指标池打下基础。
准 确 性 :一个指标最要的就是能否准确的进行统计,如果这点满足不了,其他一切免谈,否则只会搬起石头砸自己的脚(切忌,切忌!)
可 比 较 性:是指有维度可比较,比如同期比较,不同地区比较,如果没有比较,指标也没有意义。
业务指导性:当一个指标发生异常变动,对运营下步的执行没有任何指导意义的时候,或者说还是按照之前的方式继续执行的时候,这个指标就是没有指导性的,可以直接放弃。
简 单 易 懂:如果无法一个指标无法快速的让人理解,运用效果一定是差强人意。


image

4、什么是指标体系:

经过上面长长的铺垫,终于得到了指标体系的概念:

二.指标体系好处

全局性

宏观的角度审视业务流程或者关键节点,分析维度更加全面。

高效性

当发现关键目标出现异常波动,根据该体系可以快速定位到问题点。

逻辑性

每个指标都有内在关系,看到的问题可以更深一层。

三.如何搭建指标体系

搭建指标体系主要有2套方法:业务流程法、OKR拆解法。下面通过案例逐一讲解。


image

1、业务流程法

从整体的流程来说主要包括下面八个步骤,每个步骤电商网站双十一GMV成交额(GMV)案例来说明。


image
image

2.OKR拆解法

OKR(Objectives and Key Results)即目标与关键成果法,是一套明确和跟踪目标及其完成情况的管理工具和方法。整体流程和业务流程法大同小异。
关键点就是下图虚线矿中的目标拆解。我们以豆瓣MAU1000万案例来说明。

image
在拆解的过程中就是逐层的抽丝剥茧,但是每个人的剥法可能不同,结果也会有差异,但是在相同的业务基本框架差不多。下面是我个人的拆解方法。
image
第一层拆解:
   月活MAU=月新增用户+老用户数
   第二层拆解:月新增用户
      月新增用户=∑日/周新增用户相加
      日/周新增用户=日/周访客数注册转化率
      第三层拆解:日/周访客数
         日/周访客数=广告投放访客+用户裂变访客数
   第二层拆解:老用户数
      老用户数=累计用户数
用户留存率
      老用户数=主动回访用户数+营销回访用户数
      第三层拆解:用户留存率、营销回访用户
         老用户留存率、新用户留存率
         付费回访、免费回访

ORK在拆解的过程中注意下面三点,其实整体下来OKR拆解是比业务流程法有一定的难度的,这也是为什么要熟悉/精通业务的原因。


image

3.OSM模型

两种方法讲完了,补充一个有用的模型工具,OSM模型(Obejective,Strategy,Measurement)分别代表业务目标、业务策略、业务度量。

O:用户使用产品的目标是什么?产品满足了用户的什么需求?
S:为了达成上述目标我采取的策略是什么?
M:这些策略随之带来的数据指标变化有哪些?

OSM模型主要有下面三大用处,尤其是第三点,上面我举的2个案例,相对来说还不够细,无法有效的在某家公司进行落地,只有根据该公司具体的业务场景进行本土化,才能有效落地。但是这些内容对于求职面试已经是足够了。

1、协助确认关键流程或者节点
2、补充丰富指标池
3、建立企业本土化指标体系

四.一个讨论

设计一个好的指标体系,大家觉得最关键的点是什么呢?
这里给大家抛出这么个问题,希望可以留言讨论,博主也会参与大家的交流。

上一篇下一篇

猜你喜欢

热点阅读