数据分析之指标体系
指标体系是数据分析师招聘JD中高频出现的词汇,也是分析师必备的技能,尤其是社招岗位。在数据分析师校招岗位中出现的比例虽然没有社招高,但是也有50%的比例,随着入职后工作的展开,这块也是必须要掌握的技能。
对于产品经理、运营的同学来说,如果想证明自己的数据分析能力,指标体系是一个很重要的点,尤其是在往高阶的产品和运营发展的时候。
本文的主要目的是让读者知道什么是指标体系,以及通过2种不同的方法来搭建指标体系。
本文结构如下:
一. 指标体系概念
二. 指标体系的好处
三. 如何搭建指标体系
四. 一个讨论
一.指标体系概念
从字面上来看,“指标体系”是可以分成“指标”、“体系”两个词语,所以这里我们先看一下什么“指标”?
1、什么指标:
来自百度百科的定义:指标是说明总体数量特征的概念及其数值的综合。
综合数据大V的定义:针对某一具体事物或行为进行量化描述的数值。
上面两个定义可能都不是特别的好理解,看一下下面的3个例子,会更形象一些,9.96亿的GDP,4982亿的GMV,12.13亿的UV,这些就是指标。当别人问一下平时看哪些关键指标时,只要交流具体名称即可。
image
在上面直接讲“9.96亿的GDP,4982亿的GMV,12.13亿的UV”这一串数字的时候,我相信大家一定是有疑问的。这里我们开始引入“维度”概念。
2、什么是维度:
维度是指标的属性或者特征,同时也是指标的必要定语!且看下图,9.96万亿如果加上2019年江苏省这两个属性,是不是就更加明确和有意义了。是的,2019年是时间维度,江苏省地区维度,天猫、微信是平台维度。时间维度从低层到高层包括日、周、月、季度、年度等。地区维度从低层到高层包括区/县、市、省、国家等。当然还可以根据自己业务需要重新定义和划分。
image
下图是电商业务中常见的分析维度
image
3、好的指标:
因为指标是指标体系的关键,有必要强调一下什么是好的指标,为后续建设指标池打下基础。
准 确 性 :一个指标最要的就是能否准确的进行统计,如果这点满足不了,其他一切免谈,否则只会搬起石头砸自己的脚(切忌,切忌!)
可 比 较 性:是指有维度可比较,比如同期比较,不同地区比较,如果没有比较,指标也没有意义。
业务指导性:当一个指标发生异常变动,对运营下步的执行没有任何指导意义的时候,或者说还是按照之前的方式继续执行的时候,这个指标就是没有指导性的,可以直接放弃。
简 单 易 懂:如果无法一个指标无法快速的让人理解,运用效果一定是差强人意。
image
4、什么是指标体系:
经过上面长长的铺垫,终于得到了指标体系的概念:
- 相互之间有逻辑联系的指标及维度构成的整体
- 一个指标不能叫指标体系
- 几个毫无关系的指标也不能叫指标体系
二.指标体系好处
全局性
宏观的角度审视业务流程或者关键节点,分析维度更加全面。
高效性
当发现关键目标出现异常波动,根据该体系可以快速定位到问题点。
逻辑性
每个指标都有内在关系,看到的问题可以更深一层。
三.如何搭建指标体系
搭建指标体系主要有2套方法:业务流程法、OKR拆解法。下面通过案例逐一讲解。
image
1、业务流程法
从整体的流程来说主要包括下面八个步骤,每个步骤电商网站双十一GMV成交额(GMV)案例来说明。
image
image
- 需求收集&明确目标:一般是围绕公司级别的目标拆解下来,或者某个项目的具体目标,这个目标可能不止一个。案例是双十一成交额500亿。
- 梳理业务流程:以用户的目标节点往前推,看用户达到这个目标有哪些环节
- 确定关键环节:在上步梳理的业务流程中相对会复杂一些,也都是有必要的,我们还需要将关键环节进行明确,也是我们后续优化的逻辑之一。电商我总结出来的关键环节是:进入网站=》查看商详页=》加入购物车=》下单(商详页也可以直接下单)=》付款。
- 建设指标池:根据梳理的业务流程、及关键环节找出每个环节的必要指标拿出指标池,这也是我们指标体系的原始素材
- 明确关键指标:从指标池中挑出关键指标,同时和第三步相呼应。这里的关键指标,在为数据可视化中的大盘打下一个基础。在上图中没有将指标池画出来,直接了关键指标,包括每个关键环节的UV/GMV/转化率等。
-
维度选取:在完善了指标池和和关键指标之后,我们需要分析指标的属性,也就是维度,维度尽可能的丰富,一套指标体系的丰富程度很大程度上取决于维度的丰富度。经过上面几步,脑图版本的指标体系已经初步完成,数据、产品、运营各个团队就可以进行讨论和优化了。
image -
明确指标口径:我们在上面有提到好的指标中第一个就是“准确性”,准确性的前提是有明确的定义,如果定义不清楚,准确性无从谈起。
image -
设计数据可视化:可视化一般分为3个层面,核心指标的数据大盘、部分关键指标的图表展示,常规数据的表格展现。
image
2.OKR拆解法
OKR(Objectives and Key Results)即目标与关键成果法,是一套明确和跟踪目标及其完成情况的管理工具和方法。整体流程和业务流程法大同小异。
关键点就是下图虚线矿中的目标拆解。我们以豆瓣MAU1000万案例来说明。
在拆解的过程中就是逐层的抽丝剥茧,但是每个人的剥法可能不同,结果也会有差异,但是在相同的业务基本框架差不多。下面是我个人的拆解方法。
image
第一层拆解:
月活MAU=月新增用户+老用户数
第二层拆解:月新增用户
月新增用户=∑日/周新增用户相加
日/周新增用户=日/周访客数注册转化率
第三层拆解:日/周访客数
日/周访客数=广告投放访客+用户裂变访客数
第二层拆解:老用户数
老用户数=累计用户数用户留存率
老用户数=主动回访用户数+营销回访用户数
第三层拆解:用户留存率、营销回访用户
老用户留存率、新用户留存率
付费回访、免费回访
ORK在拆解的过程中注意下面三点,其实整体下来OKR拆解是比业务流程法有一定的难度的,这也是为什么要熟悉/精通业务的原因。
image
3.OSM模型
两种方法讲完了,补充一个有用的模型工具,OSM模型(Obejective,Strategy,Measurement)分别代表业务目标、业务策略、业务度量。
O:用户使用产品的目标是什么?产品满足了用户的什么需求?
S:为了达成上述目标我采取的策略是什么?
M:这些策略随之带来的数据指标变化有哪些?
OSM模型主要有下面三大用处,尤其是第三点,上面我举的2个案例,相对来说还不够细,无法有效的在某家公司进行落地,只有根据该公司具体的业务场景进行本土化,才能有效落地。但是这些内容对于求职面试已经是足够了。
1、协助确认关键流程或者节点
2、补充丰富指标池
3、建立企业本土化指标体系
四.一个讨论
设计一个好的指标体系,大家觉得最关键的点是什么呢?
这里给大家抛出这么个问题,希望可以留言讨论,博主也会参与大家的交流。