生活杂谈java面试

Redis分布式锁安全性的探讨

2018-08-31  本文已影响110人  AKyS佐毅

Redis分布式锁安全性的探讨

1、基于单Redis节点的分布式锁

SET resource_name my_random_value NX PX 30000 命令中容易被忽略的4个细节:

当然,上面描述的只是获取锁的过程,而释放锁的过程比较简单:客户端向所有Redis节点发起释放锁的操作,不管这些节点当时在获取锁的时候成功与否。也就是说,即使当时向某个节点获取锁没有成功,在释放锁的时候也不应该漏掉这个节点。这是因为存在这样一种情况,客户端发给某个Redis节点的获取锁的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。

由于N个Redis节点中的大多数能正常工作就能保证Redlock正常工作,因此理论上它的可用性更高。我们前面讨论的单Redis节点的分布式锁在failover的时候锁失效的问题,在Redlock中不存在了,但如果有节点发生崩溃重启,还是会对锁的安全性有影响的。具体的影响程度跟Redis对数据的持久化程度有关。 


 假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:

-  客户端1成功锁住了A, B, C,获取锁成功(但D和E没有锁住)。

-  节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
-  节点C重启后,客户端2锁住了C, D, E,获取锁成功。

这样,客户端1和客户端2同时获得了锁(针对同一资源)。

在默认情况下,Redis的AOF持久化方式是每秒写一次磁盘(即执行fsync),因此最坏情况下可能丢失1秒的数据。为了尽可能不丢数据,Redis允许设置成每次修改数据都进行fsync,但这会降低性能。当然,即使执行了fsync也仍然有可能丢失数据(这取决于系统而不是Redis的实现)。所以,由于节点崩溃重启引发的锁失效问题,总是有可能出现的。为了应对这一问题,作者又提出了延迟重启(delayed restarts)的概念。也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。

Martin(一个分布式专家)认为Redlock对系统记时(timing)的过分依赖(Redis中EX或PX时间都依靠服务器时间,如果手动调一下服务器时间使其大于有效时间,那么这个键值对将立刻过期),他首先给出了下面的一个例子(还是假设有5个Redis节点A, B, C, D, E):

Redlock的安全性(safety property)对系统的时钟有比较强的依赖,一旦系统的时钟变得不准确,算法的安全性也就保证不了了。Martin在这里其实是要指出分布式算法研究中的一些常识问题,即好的分布式算法应该基于异步模型(asynchronous model),算法的安全性不应该依赖于任何记时假设(timing assumption)。在异步模型中:进程可能pause任意长的时间,消息可能在网络中延迟任意长的时间,甚至丢失,系统时钟也可能以任意方式出错。一个好的分布式算法,这些因素不应该影响它的安全性(safety property),只可能影响到它的活性(liveness property),也就是说,即使在非常极端的情况下(比如系统时钟严重错误),算法顶多是不能在有限的时间内给出结果而已,而不应该给出错误的结果。这样的算法在现实中是存在的,像比较著名的Paxos,或Raft。但显然按这个标准的话,Redlock的安全性级别是达不到的。

Martin还提出一个很有见地的观点,就是对锁的用途的区分。他把锁的用途分为两种:

 - 为了效率(efficiency),协调各个客户端避免做重复的工作。即使锁偶尔失效了,只是可能把某些操作多做一遍而已,不会产生其它的不良后果。比如重复发送了一封同样的email。

 - 为为了正确性(correctness)。在任何情况下都不允许锁失效的情况发生,因为一旦发生,就可能意味着数据不一致(inconsistency),数据丢失,文件损坏,或者其它严重的问题。

最后,Martin得出了如下的结论:

 - **如果是为了效率(efficiency)而使用分布式锁,允许锁的偶尔失效,那么使用单Redis节点的锁方案就足够了,简单而且效率高。Redlock则是个过重的实现(heavyweight)。**

 - **如果是为了正确性(correctness)在很严肃的场合使用分布式锁,那么不要使用Redlock。它不是建立在异步模型上的一个足够强的算法,它对于系统模型的假设中包含很多危险的成分(对于timing)。应该考虑类似Zookeeper的分布式锁方案(这也是目前企业流行方案),或者支持事务的数据库。**

到此,Martin认为Redlock会失效的情况主要有三种:

- 时钟发生跳跃。

- 长时间的GC pause。
- 长时间的网络延迟。

对于后两种情况来说,Redlock在当初设计的时候已经考虑到了,对它们引起的后果有一定的免疫力。并且对于大延迟给Redlock带来的影响与所有的分布式锁是一致的,而这种影响不单单针对Redlock。Redlock的实现已经保证了它是和其它任何分布式锁的安全性是一样的。 

关键在于时钟跳跃,Redis作者认为通过恰当的运维,完全可以避免时钟发生大的跳动,而Redlock对于时钟的要求在现实系统中是完全可以满足的。(实际中:时钟偏移在现实中是存在的)

Martin在提到时钟跳跃的时候,举了两个可能造成时钟跳跃的具体例子:

-  系统管理员手动修改了时钟。

-  从NTP服务收到了一个大的时钟更新事件。

Redis作者反驳说:

-  手动修改时钟这种人为原因,不要那么做就是了。否则的话,如果有人手动修改Raft协议的持久化日志,那么就算是Raft协议它也没法正常工作了。

-  使用一个不会进行“跳跃”式调整系统时钟的ntpd程序(可能是通过恰当的配置),对于时钟的修改通过多次微小的调整来完成。

-  而Redlock对时钟的要求,并不需要完全精确,它只需要时钟差不多精确就可以了。比如,要记时5秒,但可能实际记了4.5秒,然后又记了5.5秒,有一定的误差。不过只要误差不超过一定范围,这对Redlock不会产生影响。antirez认为呢,像这样对时钟精度并不是很高的要求,在实际环境中是完全合理的。

3、基于ZK的分布式锁

看起来这个锁相当完美,没有Redlock过期时间的问题,而且能在需要的时候让锁自动释放。但仔细考察的话,并不尽然。

ZooKeeper是怎么检测出某个客户端已经崩溃了呢?实际上,每个客户端都与ZooKeeper的某台服务器维护着一个Session,这个Session依赖定期的心跳(heartbeat)来维持。如果ZooKeeper长时间收不到客户端的心跳(这个时间称为Sesion的过期时间),那么它就认为Session过期了,通过这个Session所创建的所有的ephemeral类型的znode节点都会被自动删除。

设想如下的执行序列:

 - 客户端1创建了znode节点/lock,获得了锁。
 
 - 客户端1进入了长时间的GC pause。
 - 客户端1连接到ZooKeeper的Session过期了。znode节点/lock被自动删除。
 - 客户端2创建了znode节点/lock,从而获得了锁。
 - 客户端1从GC pause中恢复过来,它仍然认为自己持有锁。

最后,客户端1和客户端2都认为自己持有了锁,冲突了。这与之前Martin在文章中描述的由于GC pause导致的分布式锁失效的情况类似。

看起来,用ZooKeeper实现的分布式锁也不一定就是安全的。该有的问题它还是有。但是,ZooKeeper作为一个专门为分布式应用提供方案的框架,它提供了一些非常好的特性,是Redis之类的方案所没有的。像前面提到的ephemeral类型的znode自动删除的功能就是一个例子。

还有一个很有用的特性是ZooKeeper的watch机制。这个机制可以这样来使用,比如当客户端试图创建/lock的时候,发现它已经存在了,这时候创建失败,但客户端不一定就此对外宣告获取锁失败。客户端可以进入一种等待状态,等待当/lock节点被删除的时候,ZooKeeper通过watch机制通知它,这样它就可以继续完成创建操作(获取锁)。这可以让分布式锁在客户端用起来就像一个本地的锁一样:加锁失败就阻塞住,直到获取到锁为止。这样的特性Redlock就无法实现。

4、总 结一下,基于ZooKeeper的锁和基于Redis的锁相比在实现特性上有两个不同:

145天以来,Java架构更新了 428个主题,已经有91位同学加入。微信扫码关注java架构,获取Java面试题和架构师相关题目和视频。上述相关面试题答案,尽在Java架构中。

上一篇下一篇

猜你喜欢

热点阅读