比较基因组从入门到放弃(4)
2021-06-17 本文已影响0人
Morriyaty
今儿来讲一哈利用Paml计算收到正选择的基因
因为很多的基因 Ka/Ks 都要小于1 我们用P值来定义是否受到正选择
软件用到的是singularity 的paml 容器
#准备树文件
#tree
9 1
(cattle,(horse,((gorilla,human),(rabbit,(hamster,(cahirinus #1,(mouse,rat)))))));
#notree
9 1
(cattle,(horse,((gorilla,human),(rabbit,(hamster,(cahirinus,(mouse,rat)))))));
#批量生成命令行
python3 run.py og.list run.sh
python3 norun.py og.list norun.sh
codeml.ctl:
seqfile = test.phy * sequence data filename
treefile = tree * tree structure file name
outfile = mlc * main result file name
noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
verbose = 1 * 0: concise; 1: detailed, 2: too much
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
* 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise
seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs
CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
* ndata = 10
clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis
aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
aaRatefile = dat/jones.dat * only used for aa seqs with model=empirical(_F)
* dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own
model = 2
* models for codons:
* 0:one, 1:b, 2:2 or more dN/dS ratios for branches
* models for AAs or codon-translated AAs:
* 0:poisson, 1:proportional, 2:Empirical, 3:Empirical+F
* 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)
NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
* 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ
* 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
* 13:3normal>0
icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
Mgene = 0
* codon: 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff
* AA: 0:rates, 1:separate
fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
kappa = 2 * initial or fixed kappa
fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
omega = 1 * initial or fixed omega, for codons or codon-based AAs
fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * different alphas for genes
ncatG = 8 * # of categories in dG of NSsites models
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
RateAncestor = 1 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)
Small_Diff = .5e-6
cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed, 3: proportional
method = 0 * Optimization method 0: simultaneous; 1: one branch a time
* Genetic codes: 0:universal, 1:mammalian mt., 2:yeast mt., 3:mold mt.,
* 4: invertebrate mt., 5: ciliate nuclear, 6: echinoderm mt.,
* 7: euplotid mt., 8: alternative yeast nu. 9: ascidian mt.,
* 10: blepharisma nu.
* These codes correspond to transl_table 1 to 11 of GENEBANK.
model = 0 即为nocodeml.ctl
注:输入文件名记得改 不然会覆盖掉
#开始处理结果
python3 run1.py og.list run1.sh
sh run1.sh
python3 run2.py og.list run2.sh
sh run2.sh
cat align/*/Pout > allPout
python3 p.py allPout out.r
Rscript out.r > pvalue
paste allPout pvalue | awk '{print$1,$5}' | awk 'IF$2<0.01{print$0}' > p001.list
cat p001.list | sort -n -k2 -r > sort.pvalue
#对P value 进行校正后选取 p < 0.01 的基因家族
之后就是找到其对应的基因名,查看其功能了。
在不操心