btcd的p2p网络(2)-连接ConnMgr
p2p网络从底层到上层可以分为3层,地址 连接 节点,每一层都有自己的功能
声明:文章代码和源码有不一致地方
这篇文章简单记录下连接conn
三个主要的结构体
1、连接管理
// ConnManager providers a manager to handle network connections.
type ConnManager struct {
// the following variables must only be used atomically
// 记录自己主动连接其他节点的连接数量
connReqCount uint64
// 标识connmgr已经启动
start int32
// 标识connmgr已经结束
stop int32
// 设定相关的配置
cfg Config
// 用于同步connmgr的退出状态,调用方可以阻塞等待connmgr的工作协程退出
wg sync.WaitGroup
// 某个连接失败后,connmgr尝试选择新的peer地址连接的总次数
failedAttempts uint64
// 用于与connmgr工作协程通信的管道
requests chan interface{}
// 用于通知工作协程退出
quit chan struct{}
}
2、Config,配置参数
其实就是connmgr
配置,本身就是connmgr的一个字段。
// Config holds the configuration options related to the connection manager.
type Config struct {
// Listeners define a slice of listeners for which the connection manager
// will take ownership of(取得所有权) and accept connections. when a connection
// is accepted,the OnAccept handler will be invoked with the connection. since
// the connection manager takes ownership of these listeners,they will be closed
// when the connection manager is stoped.
// this field will not have any effect if the onAccept field is not also specified.
// It may be nil if the caller does not wish to listen for
// incoming connection
Listeners []net.Listener //节点上所有等待外部连接的监听点;
// OnAccept is a callback that is fired when an inbound connection is
// accepted. It is the caller's responsibility(责任、义务) to close the connection.
// Failure to close the connection will result in the connection manager
// believing the connection is still active and thus have undesirable
// side effects such as still counting toward maximum connection limits.
//
// This field will not have any effect if the Listeners field is not
// also specified since there couldn't possibly be any accepted
// connections in that case.
OnAccept func(net.Conn) // 节点应答并接受外部连接后的回调函数
// TargetOutbound is the number of outbound network connections to
// maintain. Defaults to 8.
TargetOutbound uint32 // 节点主动向外连接peer的最大个数
// RetryDuration is the duration to wait before retrying connection
// requests. Defaults to 5s.
RetryDuration time.Duration // 连接失败后发起重连的等待时间
// OnConnection is a callback that is fired when a new outbound
// connection is established.
OnConnection func(*ConnReq, net.Conn) // 连接建立成功后的回调函数
// OnDisconnection is a callback that is fired when an outbound
// connection is disconnected.
OnDisconnection func(*ConnReq) // 连接关闭后的回调函数
// GetNewAddress is a way to get an address to make a network connection
// to. If nil, no new connections will be made automatically.
// 连接失败后,ConnMgr可能会选择新的peer地址进行连接
// GetNewAddress函数提供了获取新的peer地址的方法,它最终会调用addrManager中
// 的GetAddress()来分配新地址。
GetNewAddress func() (net.Addr, error)
// Dial connects to the address on the named network.It cannot be nil.
// 定义建立TCP连接的方式,是直接连接还是通过代理连接。
Dial func(net.Addr) (net.Conn, error)
}
3、ConnReq 描述了一个连接
// ConnReq is the connection request to a network address. If permanent, the
// connection will be retried on disconnection.
// ConnReq 描述了一个连接
type ConnReq struct {
// The following variables must only be used atomically.
// 连接的序号,用于索引
id uint64
// 连接的目的地址
Addr net.Addr
// 标识是否与Peer保持永久连接,如果为true,
// 则连接失败后,继续尝试与该Peer连接,而不是选择新的Peer地址重新连接
Permanent bool
// 连接成功后,真实的net.Conn对象;
conn net.Conn
// 连接的状态,有ConnPending、ConnEstablished、ConnDisconnected及ConnFailed等;
state ConnState
// stateMtx: 保护state状态的读写锁;
stateMtx sync.RWMutex
//retryCount: 如果Permanent为true,retryCount记录该连接重复重连的次数;
retryCount uint32
}
结合起来说,就是连接管理器connmgr
按照自身的配置config
,管理着一些连接connReq
启动ConnMgr
我们先看start()
函数
// Start: launches(发起、发动)the connection manager and begins conecting to the network.
func (cm *ConnManager) Start() {
// already started ?
if atomic.AddInt32(&cm.start, 1) != 1 {
return
}
log.Trace("Connection manager started")
cm.wg.Add(1)
// 启动工作协程
go cm.connHandler()
// Start all the listeners so long as the caller requested
// them and provided a callback to be invoked when connections are accepted.
if cm.cfg.OnAccept != nil {
for _, listenr := range cm.cfg.Listeners {
cm.wg.Add(1)
// 启动监听协程listenHandler,等待其他节点连接;
go cm.listenHandler(listenr)
}
}
// 启动建立连接的协程,选择Peer地址并主动连接;
for i := atomic.LoadUint64(&cm.connReqCount); i < uint64(cm.cfg.TargetOutbound); i++ {
go cm.NewConnReq()
}
}
主要是启动工作协程cm.connHandler()
,
然后一方面监听其他节点的连接,go cm.listenHandler(listenr)
这里面做的事情就是我们普通的tcp
地址监听。
一方面主动去连接其他的节点。
主动连接其他节点cm.NewConnReq()
// NewConnReq creates a new connection request and connects to the
// corresponding(对应的) address.
// 创建一个连接请求,然后连接对应的地址
func (cm *ConnManager) NewConnReq() {
if atomic.LoadInt32(&cm.stop) != 0 {
return
}
if cm.cfg.GetNewAddress == nil {
return
}
c := &ConnReq{}
atomic.StoreUint64(&c.id, atomic.AddUint64(&cm.connReqCount, 1))
// Submit a request of a pending connection attempt to the connection
// manager. By registering the id before the connection is even established,
// we'll be able to later cancel the connection via the Remove method.
done := make(chan struct{})
select {
case cm.requests <- registerPending{c, done}:
case <-cm.quit:
return
}
// wait for the registration to successfully add the pending conn req
// to the conn manager's internal state.
select {
case <-done:
case <-cm.quit:
return
}
addr,err := cm.cfg.GetNewAddress()
if err != nil {
select {
case cm.requests <- handleFailed{c, err}:
case <-cm.quit:
}
return
}
c.Addr = addr
cm.Connect(c)
}
首先构造一个ConnReq
,c := &ConnReq{}
,然后生成registerPending{c, done}
,
把registerPending
写入到connmgr的通道case cm.requests <- registerPending{c, done}
这里的registerPending
结构体中还有一个通道done
,cm.requests
这个通道肯定有人会从里面读数据,处理完后会通过通道done
返回信息。下面的case <-done:
就是在等待返回的信息。
谁在通道的另外一头读呢?go cm.connHandler()
,下面这个图就是他们工作概况
然后cm.cfg.GetNewAddress()
得到一个连接的地址(这里用到了addrMgr
),然后连接连接cm.Connect(c)
// Connection assigns an id and dials a connection to the address of the connection request
func (cm *ConnManager) Connect(c *ConnReq){
if atomic.LoadInt32(&cm.stop) != 0{
return
}
// TODO 再次检查一遍,相当于重复了NewConnReq()的工作
log.Debugf("Attempting to connect to %v", c)
conn,err := cm.cfg.Dial(c.Addr)
if err != nil {
select {
case cm.requests <- handleFailed{c, err}:
case <-cm.quit:
}
return
}
select {
case cm.requests <- handleConnected{c, conn}:
case <-cm.quit:
}
}
连接主要就是这句代码conn,err := cm.cfg.Dial(c.Addr)
,这个Dial
就是在普通的tcp
连接外包了一层,让我们有个选择,比如可以通过代理进行连接。
不论是连接成功还是失败,handleConnected{c, conn}:
和handleFailed{c, err}:
这两个结构体都被构建,并且发送到cm.requests
有连接就有断开
func (cm *ConnManager) Disconnect(id uint64) {
if atomic.LoadInt32(&cm.stop) != 0 {
return
}
select {
case cm.requests <- handleDisconnected{id, true}:
case <-cm.quit:
}
}
可connect
也差不多,都是向cm.requests
发了一个请求。
看来,连接或者断开连接的主要处理逻辑在connHandler中,我们来看看它的实现:
// connHandler handles all connection related requests. It must be run as a
// goroutine.
//
// The connection handler makes sure that we maintain a pool of active outbound
// connections so that we remain connected to the network. Connection requests
// are processed and mapped by their assigned ids.
func (cm *ConnManager) connHandler() {
// pending holds all registered conn requests that hava yet to succeed.
var pending = make(map[uint64]*ConnReq)
// conns represents the set of all actively connected peers.
var conns = make(map[uint64]*ConnReq, cm.cfg.TargetOutbound) // make map时,size可以省略,当你知道大小时,最好加上
out:
for {
select {
case req := <- cm.requests:
switch msg:=req.(type) {
case registerPending:
// TODO
case handleConnected:
connReq := msg.c
if _, ok := pending[connReq.id]; !ok {
if msg.conn != nil {
msg.conn.Close()
}
log.Debugf("Ignoring connection for "+
"canceled connreq=%v", connReq)
continue
}
connReq.updateState(ConnEstablished)
connReq.conn = msg.conn
conns[connReq.id] = connReq
log.Debugf("Connected to %v", connReq)
connReq.retryCount = 0
cm.failedAttempts = 0
delete(pending, connReq.id)
if cm.cfg.OnConnection != nil {
go cm.cfg.OnConnection(connReq, msg.conn)
}
case handleDisconnected:
// TODO
case handleFailed:
// TODO
}
case <-cm.quit:
break out
}
}
cm.wg.Done()
log.Trace("Connection handler done")
}
在这里不停的处理cm.requests
通道中的信息。我们看下连接成功的处理
起初创建了两个变量
// pending holds all registered conn requests that hava yet to succeed.
var pending = make(map[uint64]*ConnReq)
// conns represents the set of all actively connected peers.
var conns = make(map[uint64]*ConnReq, cm.cfg.TargetOutbound) // make map时,size可以省略,当你知道大小时,最好加上
连接成功后
- 在
map``pending
中找有没有这个连接请求,如果没有则表明这不要我们要的连接。断开 - 更新
connReq
的状态,然后添加到map conns
中 - 调用
go cm.cfg.OnConnection(connReq, msg.conn)
两个peer之间的连接conn,还需要考虑其他的很多方面。但是还好,到现在我们至少可以简单的创建一个连接了。
至于cm.cfg.OnConnection()
要干什么,我们后面再分析了。