算法时间复杂度分析 学习笔记

2018-03-21  本文已影响73人  专职跑龙套

关于我的 Leetcode 题目解答,代码前往 Github:https://github.com/chenxiangcyr/leetcode-answers


Big-O analysis 大O符号

The Big-O Asymptotic Notation gives us the Upper Bound上界 Idea, mathematically described below:

f(n) = O(g(n)) if there exists a positive integer n0 and a positive constant c, such that f(n)≤c.g(n) ∀ n≥n0

The general step wise procedure for Big-O runtime analysis is as follows
基本步骤:

The algorithms can be classified as follows from the best-to-worst performance (Running Time Complexity)
从好到坏排序:

不同时间复杂度的比较

渐近下限与渐近紧约束:

非递归算法分析

非递归算法分析

递归算法分析

迭代法与递归树 主方法

引用:
Analysis of Algorithms | Big-O analysis
算法导论------递归算法的时间复杂度求解

上一篇 下一篇

猜你喜欢

热点阅读