R语言学统计【医学统计学 第四版】统计与科研

统计学第七章 卡方检验【R语言实现】

2017-10-11  本文已影响677人  x2yline

知识点

1. 卡方分布

当自由度趋于无穷大时,图形趋于正态分布

# 产生服从卡方分布的观测数为1000的样本
df_n <- seq(1, 5)
chisq_data <- function(n){
  x <- seq(-0.2, 16, length=300)
  prob <- dchisq(x, df=n[1, 1])
  return(data.frame(x=x, prob=prob, df=n[1,1]))
}
require(plyr, quietly=TRUE)
require(ggplot2, quietly=TRUE)
data <- ddply(data.frame(n=df_n), .(n), chisq_data)
head(data)
##   n           x     prob df
## 1 1 -0.20000000 0.000000  1
## 2 1 -0.14581940 0.000000  1
## 3 1 -0.09163880 0.000000  1
## 4 1 -0.03745819 0.000000  1
## 5 1  0.01672241 3.059352  1
## 6 1  0.07090301 1.446043  1
tail(data)
##      n        x        prob df
## 1495 5 15.72910 0.003186504  5
## 1496 5 15.78328 0.003117378  5
## 1497 5 15.83746 0.003049697  5
## 1498 5 15.89164 0.002983433  5
## 1499 5 15.94582 0.002918558  5
## 1500 5 16.00000 0.002855045  5
ggplot(data, aes(x=x, y=prob, color=factor(df), group=df))+geom_line(lwd=1)+scale_y_continuous(limits=c(0, 0.7))
  1. 定义为:若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布(也称独立同分布于 标准正态分布),则这n个服从标准正态分布的随机变量的平方和服从卡方分布
  2. 可加性:两个服从卡方分布的独立随机变量相加服从自由度为两自由度之和的卡方分布
  3. 卡方检验的基本思想:由于在假设符合某种情况的前提下,样本实际值偏离理论值的偏差服从正态分布,其均值为理论值,方差也为理论值???(有点疑惑)

2. 四格表资料的卡方检验

组别 有效 无效 合计
胞磷胆碱组 46 6 52
神经节苷酯组 18 8 26
合计 64 14 78

书上P98例7-2:表格为

组别 有效 无效 合计
胞磷胆碱组 46 6 52
神经节苷酯组 18 8 26
合计 64 14 78

H0:两种药物疗效相同
H1:有效率不等

table7_2 <- matrix(c(46, 18, 6, 8), nrow=2, ncol=2)
chisq.test(table7_2)
## Warning in chisq.test(table7_2): Chi-squared approximation may be incorrect

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table7_2
## X-squared = 3.1448, df = 1, p-value = 0.07617

得到warning "Chi-squared approximation may be incorrect"
因为表格中有T<5, 此时可以采用校正【自动校正】或者fisher.test()
可以用以下代码查看理论值

chisq.test(table7_2)$expected
## Warning in chisq.test(table7_2): Chi-squared approximation may be incorrect

##          [,1]     [,2]
## [1,] 42.66667 9.333333
## [2,] 21.33333 4.666667

参考:
http://r.789695.n4.nabble.com/In-chisq-test-x-Chi-squared-approximation-may-be-incorrect-td845040.html

3. 四格表资料的Fisher确切概率法

假设两组(预防组和非预防组)的感染率都是9:33【零假设】,则边缘值固定的情况下,相当于在总数33的所有个体中【有9个感染的,24个未感染的】,取22个值作为有效组,在这22个值中,记感染的人数为X,则X~h(22, 9, 24)。
H0: 两个组无查别

# x代表取出来的白球数, k代表取的次数,m代表总白球数,n代表总黑球数
sum(dhyper(x=0:9, k=22, m=9, n=24))
## [1] 1
p_values <- dhyper(x=0:9, k=22, m=9, n=24)
p <- sum(p_values[p_values<=dhyper(x=4, k=22, m=9, n=24)])
print(p)
## [1] 0.1210448
fisher.test(matrix(c(4, 5, 18, 6), nrow=2, ncol=2))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  matrix(c(4, 5, 18, 6), nrow = 2, ncol = 2)
## p-value = 0.121
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.03974151 1.76726409
## sample estimates:
## odds ratio 
##  0.2791061

4. 配对四格表的卡方检验

mat <- matrix(c(11, 2, 12, 33), nrow=2)
# 方法1:
if (mat[1,2]+mat[2,1]>=40) {
  x_sq <- (mat[1,2]-mat[2,1])^2/(mat[1,2]+mat[2,1])
}else { x_sq <- (abs(mat[1,2]-mat[2,1])-1)^2/(mat[1,2]+mat[2,1]) }
cat("chi-squareed = ", x_sq, 
    "    p-value = ", 
    pchisq(x_sq, df=1, lower.tail=FALSE), 
    sep="")
## chi-squareed = 5.785714    p-value = 0.01615693
# 方法2:
mcnemar.test(mat)
## 
##  McNemar's Chi-squared test with continuity correction
## 
## data:  mat
## McNemar's chi-squared = 5.7857, df = 1, p-value = 0.01616

参考:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/mcnemar.test.html

5. 行*列资料的卡方检验

mat <- matrix(
  c(431, 388, 495, 137, 490, 410, 587, 179, 902, 800, 950, 32),
  nrow=4)

chisq.test(mat)
## 
##  Pearson's Chi-squared test
## 
## data:  mat
## X-squared = 213.16, df = 6, p-value < 2.2e-16
x_sq <- chisq.test(mat)$statistic[[1]]
ContCoef <- sqrt(x_sq/(x_sq+sum(mat)))
print(ContCoef)
## [1] 0.1882638

方法2:

# install.packages("DescTools")
mat <- matrix(
  c(431, 388, 495, 137, 490, 410, 587, 179, 902, 800, 950, 32),
  nrow=4)
DescTools::ContCoef(mat)
## [1] 0.1882638

参考:
https://www.rdocumentation.org/packages/DescTools/versions/0.99.19/topics/Association%20measures

6. 多个样本率之间的多重比较

7. 频数分布拟合度的卡方检验

上一篇下一篇

猜你喜欢

热点阅读