Flink大数据

Flink1.13 Checkpoint原理

2021-08-29  本文已影响0人  万事万物

介绍

Flink具体如何保证exactly-once呢? 它使用一种被称为"检查点"(checkpoint)的特性,在出现故障时将系统重置回正确状态。下面通过简单的类比来解释检查点的作用。

案例

假设你和两位朋友正在数项链上有多少颗珠子,如下图所示。你捏住珠子,边数边拨,每拨过一颗珠子就给总数加一。你的朋友也这样数他们手中的珠子。当你分神忘记数到哪里时,怎么办呢? 如果项链上有很多珠子,你显然不想从头再数一遍,尤其是当三人的速度不一样却又试图合作的时候,更是如此(比如想记录前一分钟三人一共数了多少颗珠子,回想一下一分钟滚动窗口)。

于是,你想了一个更好的办法: 在项链上每隔一段就松松地系上一根有色皮筋,将珠子分隔开; 当珠子被拨动的时候,皮筋也可以被拨动; 然后,你安排一个助手,让他在你和朋友拨到皮筋时记录总数。用这种方法,当有人数错时,就不必从头开始数。相反,你向其他人发出错误警示,然后你们都从上一根皮筋处开始重数,助手则会告诉每个人重数时的起始数值,例如在粉色皮筋处的数值是多少。

Flink检查点的作用就类似于皮筋标记。数珠子这个类比的关键点是: 对于指定的皮筋而言,珠子的相对位置是确定的; 这让皮筋成为重新计数的参考点。总状态(珠子的总数)在每颗珠子被拨动之后更新一次,助手则会保存与每根皮筋对应的检查点状态,如当遇到粉色皮筋时一共数了多少珠子,当遇到橙色皮筋时又是多少。当问题出现时,这种方法使得重新计数变得简单。

Flink的检查点算法

checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保证应用流图状态的一致性.

快照 的实现算法:

. 每个需要checkpoint的应用在启动时,Flink的JobManager为其创建一个 CheckpointCoordinator,CheckpointCoordinator全权负责本应用的快照制作。


理解Barrier

流的barrier是Flink的Checkpoint中的一个核心概念. 多个barrier被插入到数据流中, 然后作为数据流的一部分随着数据流动(有点类似于Watermark).这些barrier不会跨越流中的数据.
每个barrier会把数据流分成两部分: 一部分数据进入当前的快照 , 另一部分数据进入下一个快照 . 每个barrier携带着快照的id. barrier 不会暂停数据的流动, 所以非常轻量级. 在流中, 同一时间可以有来源于多个不同快照的多个barrier, 这个意味着可以并发的出现不同的快照.

Flink的检查点制作过程

Job Manager 对每一个job都会产生一个Checkpoint Coordinator
向所有 source 节点 触发 trigger Checkpoint节点, 并行度是几,就会触发多少个。
source 会向流中触发Barrier,接收到Barrier的节点就会保存快照(包括source)。

表示两秒钟 source 向流中触发一次Barrier

env.enableCheckpointing(2000);

source先收到barrier,然后往后传递,若是多并行度,相当于多组接力赛跑比赛,所以顺序是不一致的,并不是同步。


严格一次语义: barrier对齐

在多并行度下, 如果要实现严格一次, 则要执行barrier对齐.
当 job graph 中的每个 operator 接收到 barriers 时,它就会记录下其状态。拥有两个输入流的 Operators(例如 CoProcessFunction)会执行 barrier 对齐(barrier alignment) 以便当前快照能够包含消费两个输入流 barrier 之前(但不超过)的所有 events 而产生的状态。

至少一次语义: barrier不对齐

重复消费, 就是至少一次语义.

上一篇下一篇

猜你喜欢

热点阅读